Soft Robotics Enables Neuroprosthetic Hand Design

被引:25
作者
Gu, Guoying [1 ]
Zhang, Ningbin [1 ]
Chen, Chen [1 ]
Xu, Haipeng [1 ]
Zhu, Xiangyang [1 ]
机构
[1] Shanghai Jiao Tong Univ, Robot Inst, Sch Mech Engn, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Soft robotics; Neuroprosthetic hand; Myoelectriccontrol; Sensory feedback; UPPER-LIMB PROSTHESES; OF-THE-ART; MYOELECTRIC CONTROL; SENSORY-FEEDBACK; TOUCH; SKIN; MANIPULATION; INFORMATION; PERFORMANCE; FABRICATION;
D O I
10.1021/acsnano.3c01474
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Development and implementation of neuroprosthetic handsis a multidisciplinaryfield at the interface between humans and artificial robotic systems,which aims at replacing the sensorimotor function of the upper-limbamputees as their own. Although prosthetic hand devices with myoelectriccontrol can be dated back to more than 70 years ago, their applicationswith anthropomorphic robotic mechanisms and sensory feedback functionsare still at a relatively preliminary and laboratory stage. Nevertheless,a recent series of proof-of-concept studies suggest that soft roboticstechnology may be promising and useful in alleviating the design complexityof the dexterous mechanism and integration difficulty of multifunctionalartificial skins, in particular, in the context of personalized applications.Here, we review the evolution of neuroprosthetic hands with the emergingand cutting-edge soft robotics, covering the soft and anthropomorphicprosthetic hand design and relating bidirectional neural interactionswith myoelectric control and sensory feedback. We further discussfuture opportunities on revolutionized mechanisms, high-performancesoft sensors, and compliant neural-interaction interfaces for thenext generation of neuroprosthetic hands.
引用
收藏
页码:9661 / 9672
页数:12
相关论文
共 175 条
  • [1] The Sensory Neurons of Touch
    Abraira, Victoria E.
    Ginty, David D.
    [J]. NEURON, 2013, 79 (04) : 618 - 639
  • [2] Akhtar A, 2016, IEEE ENG MED BIO, P4642, DOI 10.1109/EMBC.2016.7591762
  • [3] [Anonymous], I LIMB ULTR
  • [4] Antfolk C, 2013, EXPERT REV MED DEVIC, V10, P45, DOI [10.1586/ERD.12.68, 10.1586/erd.12.68]
  • [5] Stretchable distributed fiber-optic sensors
    Bai, Hedan
    Li, Shuo
    Barreiros, Jose
    Tu, Yaqi
    Pollock, Clifford R.
    Shepherd, Robert F.
    [J]. SCIENCE, 2020, 370 (6518) : 848 - +
  • [6] Multi-environment robotic transitions through adaptive morphogenesis
    Baines, Robert
    Patiballa, Sree Kalyan
    Booth, Joran
    Ramirez, Luis
    Sipple, Thomas
    Garcia, Andonny
    Fish, Frank
    Kramer-Bottiglio, Rebecca
    [J]. NATURE, 2022, 610 (7931) : 283 - +
  • [7] Toward Robust, Adaptiveand Reliable Upper-Limb Motion Estimation Using Machine Learning and Deep Learning-A Survey in Myoelectric Control
    Bao, Tianzhe
    Xie, Sheng Quan
    Yang, Pengfei
    Zhou, Ping
    Zhang, Zhi-Qiang
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (08) : 3822 - 3835
  • [8] State of the Art in Bionic Hands
    Basumatary, Hirakjyoti
    Hazarika, Shyamanta M.
    [J]. IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2020, 50 (02) : 116 - 130
  • [9] Mechanical design and performance specifications of anthropomorphic prosthetic hands: A review
    Belter, Joseph T.
    Segil, Jacob L.
    Dollar, Aaron M.
    Weir, Richard F.
    [J]. JOURNAL OF REHABILITATION RESEARCH AND DEVELOPMENT, 2013, 50 (05) : 599 - 617
  • [10] Upper limb prosthesis use and abandonment: A survey of the last 25 years
    Biddiss, Elaine A.
    Chau, Tom T.
    [J]. PROSTHETICS AND ORTHOTICS INTERNATIONAL, 2007, 31 (03) : 236 - 257