Tire-road friction coefficient estimation for automatic guided vehicle under multiple road conditions

被引:3
|
作者
Liu, Wei [1 ]
Wang, Xiaowei [1 ,2 ]
Yu, Shuisheng [1 ]
Xu, Zhihao [1 ]
机构
[1] Yancheng Inst Technol, Sch Automot Engn, Yancheng, Jiangsu, Peoples R China
[2] Yancheng Inst Technol, Sch Automot Engn, 1 Hope Ave,Middle Rd, Yancheng 224051, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
AGV; tire-road friction coefficient; singular value decomposition; unscented Kalman filter; state estimation;
D O I
10.1177/09544070231177100
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The traditional unscented Kalman filter (UKF) will have the problem of reduced accuracy or even divergence in the estimation process due to state model perturbation, unknown noise of the system, and other factors, which in turn affect the estimation results of the tire-road friction coefficient. By this problem, the paper investigates the tire-road friction coefficient estimation by taking an automatic guided vehicle (AGV) as the research object and proposes an adaptive singular value decomposition unscented Kalman filter (ASVD-UKF) with a noise estimator. Singular value decomposition (SVD) is introduced into the unscented Kalman filter (UKF) for Sigma sampling to suppress the negative definiteness of the state covariance matrix in UFK. The paper considered estimation schemes for joint road, mu-split road, and mu-different road and constructed corresponding ASVD-UKF observers to reduce the dimension of the road estimation model and real-time observation of four tire-road friction coefficients. Results show that the average absolute error of the mu-split road, joint road, and mu-different road proposed in this paper is significantly smaller than that of UFK, and the estimation accuracy is improved by 13.39%, 6.74%, and 5.71%, respectively. A Distributed Drive AGV prototype was developed for a real vehicle verification experiment, with only a 1.14% error between simulation and experiment. It is further proved that the designed observers are practical. The research can provide a theoretical basis and experimental foundation for the tire-road friction coefficient estimation.
引用
收藏
页码:3399 / 3411
页数:13
相关论文
共 50 条
  • [1] Tire-Road Friction Coefficient Estimation with Vehicle Steering
    Hong, Sanghyun
    Hedrick, J. Karl
    2013 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2013, : 1227 - 1232
  • [2] VEHICLE LATERAL VELOCITY AND TIRE-ROAD FRICTION COEFFICIENT ESTIMATION
    Wang, Rongrong
    Yin, Guodong
    Wang, Junmin
    PROCEEDINGS OF THE ASME 5TH ANNUAL DYNAMIC SYSTEMS AND CONTROL DIVISION CONFERENCE AND JSME 11TH MOTION AND VIBRATION CONFERENCE, DSCC 2012, VOL 3, 2013, : 495 - 502
  • [3] Tire-Road Friction Coefficient Estimation under Constant Vehicle Speed Control
    Hu, Juqi
    Rakheja, Subhash
    Zhang, Youmin
    IFAC PAPERSONLINE, 2019, 52 (08): : 136 - 141
  • [4] Tire-Road Friction-Coefficient Estimation
    Rajamani, Rajesh
    Piyabongkarn, Damrongrit
    Lew, Jae Y.
    Yi, Kyongsu
    Phanomchoeng, Gridsada
    IEEE CONTROL SYSTEMS MAGAZINE, 2010, 30 (04): : 54 - 69
  • [5] Estimation of the maximum tire-road friction coefficient
    Müller, S
    Uchanski, M
    Hedrick, K
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2003, 125 (04): : 607 - 617
  • [6] Simultaneous estimation of vehicle sideslip angle and tire-road friction coefficient
    Yoshida, Momoko
    Yamashita, Yuh
    2013 PROCEEDINGS OF SICE ANNUAL CONFERENCE (SICE), 2013, : 1586 - 1591
  • [7] Nonlinear Observer for Vehicle Velocity and Tire-Road Friction Coefficient Estimation
    Peng, Ying
    Chen, Jian
    Yu, Jiangze
    Ma, Yan
    Zheng, Huarong
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 2606 - 2611
  • [8] A Novel Cost Effective Method for Vehicle Tire-Road Friction Coefficient Estimation
    Li, B.
    Du, H.
    Li, W.
    2013 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM): MECHATRONICS FOR HUMAN WELLBEING, 2013, : 1528 - 1533
  • [9] Slip Control of Electric Vehicle Based on Tire-Road Friction Coefficient Estimation
    Cui, Gaojian
    Dou, Jinglei
    Li, Shaosong
    Zhao, Xilu
    Lu, Xiaohui
    Yu, Zhixin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [10] Sideslip angle and tire-road friction coefficient estimation simultaneously for autonomous vehicle
    Lin, Xuefeng
    Xiong, Lu
    Xia, Xin
    DYNAMICS OF VEHICLES ON ROADS AND TRACKS, VOL 1, 2018, : 425 - 430