AN ENERGY-STABLE PARAMETRIC FINITE ELEMENT METHOD FOR SIMULATING SOLID-STATE DEWETTING PROBLEMS IN THREE DIMENSIONS

被引:7
作者
Bao, Weizhu [1 ]
Zhao, Quan [1 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2023年 / 41卷 / 04期
关键词
Solid-state dewetting; Surface diffusion; Contact line migration; Contact angle; Parametric finite element method; Anisotropic surface energy; SURFACE-DIFFUSION; THIN-FILMS; CAPILLARY INSTABILITIES; VECTOR THERMODYNAMICS; ANISOTROPIC SURFACES; APPROXIMATION; EVOLUTION; SCHEME; ISLAND; MODEL;
D O I
10.4208/jcm.2205-m2021-0237
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an accurate and energy-stable parametric finite element method for solving the sharp-interface continuum model of solid-state dewetting in three-dimensional space. The model describes the motion of the film/vapor interface with contact line migration and is governed by the surface diffusion equation with proper boundary conditions at the contact line. We present a weak formulation for the problem, in which the contact angle condition is weakly enforced. By using piecewise linear elements in space and backward Euler method in time, we then discretize the formulation to obtain a parametric finite element approximation, where the interface and its contact line are evolved simultaneously. The resulting numerical method is shown to be well-posed and unconditionally energy -stable. Furthermore, the numerical method is generalized to the case of anisotropic surface energies in the Riemannian metric form. Numerical results are reported to show the convergence and efficiency of the proposed numerical method as well as the anisotropic effects on the morphological evolution of thin films in solid-state dewetting.
引用
收藏
页码:771 / 796
页数:26
相关论文
共 49 条
[1]   Anisotropic hole growth during solid-state dewetting of single-crystal Au-Fe thin films [J].
Amram, D. ;
Klinger, L. ;
Rabkin, E. .
ACTA MATERIALIA, 2012, 60 (6-7) :3047-3056
[2]   A finite element method for surface diffusion:: the parametric case [J].
Bänsch, E ;
Morin, P ;
Nochetto, RH .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 203 (01) :321-343
[3]   Volume-preserving parametric finite element methods for axisymmetric geometric evolution equations [J].
Bao, Weizhu ;
Garcke, Harald ;
Nurnberg, Robert ;
Zhao, Quan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 460
[4]   A STRUCTURE-PRESERVING PARAMETRIC FINITE ELEMENT METHOD FOR SURFACE DIFFUSION [J].
Bao, Weizhu ;
Zhao, Quan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (05) :2775-2799
[5]   STABLE EQUILIBRIA OF ANISOTROPIC PARTICLES ON SUBSTRATES: A GENERALIZED WINTERBOTTOM CONSTRUCTION [J].
Bao, Weizhu ;
Jiang, Wei ;
Srolovitz, David J. ;
Wang, Yan .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2017, 77 (06) :2093-2118
[6]   A parametric finite element method for solid-state dewetting problems with anisotropic surface energies [J].
Bao, Weizhu ;
Jiang, Wei ;
Wang, Yan ;
Zhao, Quan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 330 :380-400
[7]   A variational formulation of anisotropic geometric evolution equations in higher dimensions [J].
Barrett, John W. ;
Garcke, Harald ;
Nurnberg, Robert .
NUMERISCHE MATHEMATIK, 2008, 109 (01) :1-44
[8]   On the parametric finite element approximation of evolving hypersurfaces in R3 [J].
Barrett, John W. ;
Garcke, Harald ;
Nurnberg, Robert .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (09) :4281-4307
[9]   Finite-element approximation of coupled surface and grain boundary motion with applications to thermal grooving and sintering [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2010, 21 (06) :519-556
[10]   Parametric approximation of surface clusters driven by isotropic and anisotropic surface energies [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
INTERFACES AND FREE BOUNDARIES, 2010, 12 (02) :187-234