Signal Separation from Thermal Neutrons in Electron-Neutron Detectors Using Convolutional Neural Nets in the ENDA Experiment

被引:0
作者
Kurinov, K. O. [1 ]
Kuleshov, D. A. [1 ]
Lagutkina, A. A. [2 ]
Stenkin, Yu. V. [1 ,2 ]
Shchegolev, O. B. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Moscow Oblast, Russia
关键词
PULSE-SHAPE DISCRIMINATION;
D O I
10.1134/S1063776123040039
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The electron-neutron detector array (ENDA) is being created in China within the large high-altitude air shower observatory (LHAASO) project. The concept of the array is to simultaneously record the electromagnetic and hadronic components of extensive air showers (EAS) with EN detectors. To estimate the number of hadrons in an EAS, the array detectors record secondary thermal neutrons delayed relative to the shower front. Some of the delayed pulses are created by the simultaneous passage of several charged particles through the scintillator (the signal from one particle lies below the detection threshold) and by the photomultiplier noise. We propose a neutron pulse separation method for EN detectors using convolutional neural networks and make a comparison with the baseline method being currently applied at the installation.
引用
收藏
页码:465 / 471
页数:7
相关论文
共 20 条
[1]   LOWESS - A PROGRAM FOR SMOOTHING SCATTERPLOTS BY ROBUST LOCALLY WEIGHTED REGRESSION [J].
CLEVELAND, WS .
AMERICAN STATISTICIAN, 1981, 35 (01) :54-54
[2]  
Deng JK, 2019, Arxiv, DOI arXiv:1801.07698
[3]   Machine learning n/γ discrimination in CLYC scintillators [J].
Doucet, E. ;
Brown, T. ;
Chowdhury, P. ;
Lister, C. J. ;
Morse, C. ;
Bender, P. C. ;
Rogers, A. M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2020, 954
[4]   Pulse shape discrimination and exploration of scintillation signals using convolutional neural networks [J].
Griffiths, J. ;
Kleinegesse, S. ;
Saunders, D. ;
Taylor, R. ;
Vacheret, A. .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (04)
[5]   Thermal neutron flux detection near the Earth's surface [J].
Gromushkin D.M. ;
Alekseenko V.V. ;
Petrukhin A.A. ;
Stenkin Yu.V. ;
Yashin I.I. .
Bulletin of the Russian Academy of Sciences: Physics, 2009, 73 (03) :407-409
[6]  
King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001
[7]  
Paszke A, 2019, ADV NEUR IN, V32
[8]   Study of the thermal neutron detector ZnS(Ag)/LiF response using digital pulse processing [J].
Pino, F. ;
Stevanato, L. ;
Cester, D. ;
Nebbia, G. ;
Sajo-Bohus, L. ;
Viesti, G. .
JOURNAL OF INSTRUMENTATION, 2015, 10
[9]   An algorithm for charge-integration, pulse-shape discrimination and estimation of neutron/photon misclassification in organic scintillators [J].
Polack, J. K. ;
Flaska, M. ;
Enqvist, A. ;
Sosa, C. S. ;
Lawrence, C. C. ;
Pozzi, S. A. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2015, 795 :253-267