Single-frame deep-learning super-resolution microscopy for intracellular dynamics imaging

被引:43
作者
Chen, Rong [1 ]
Tang, Xiao [2 ]
Zhao, Yuxuan [3 ]
Shen, Zeyu [2 ]
Zhang, Meng [3 ]
Shen, Yusheng [2 ]
Li, Tiantian [2 ]
Chung, Casper Ho Yin [4 ]
Zhang, Lijuan [5 ]
Wang, Ji [4 ]
Cui, Binbin [1 ]
Fei, Peng [3 ]
Guo, Yusong [2 ]
Du, Shengwang [1 ,6 ,7 ]
Yao, Shuhuai [1 ,4 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Div Life Sci, Hong Kong, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[4] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Hong Kong, Peoples R China
[5] Guizhou Univ, Sch Pharmaceut Sci, Guiyang 550025, Guizhou, Peoples R China
[6] Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Peoples R China
[7] Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA
关键词
LIVE-CELL; RESOLUTION LIMIT; TRANSPORT; RECONSTRUCTION; NANOSCOPY; VIRUS;
D O I
10.1038/s41467-023-38452-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multi-frame super-resolution microscopy is hampered by long acquisition times and phototoxicity, which hinder its use for live-cell imaging. Here, authors propose a deep-learning-based single-frame super-resolution approach to image cellular dynamics with high spatiotemporal resolution. Single-molecule localization microscopy (SMLM) can be used to resolve subcellular structures and achieve a tenfold improvement in spatial resolution compared to that obtained by conventional fluorescence microscopy. However, the separation of single-molecule fluorescence events that requires thousands of frames dramatically increases the image acquisition time and phototoxicity, impeding the observation of instantaneous intracellular dynamics. Here we develop a deep-learning based single-frame super-resolution microscopy (SFSRM) method which utilizes a subpixel edge map and a multicomponent optimization strategy to guide the neural network to reconstruct a super-resolution image from a single frame of a diffraction-limited image. Under a tolerable signal density and an affordable signal-to-noise ratio, SFSRM enables high-fidelity live-cell imaging with spatiotemporal resolutions of 30 nm and 10 ms, allowing for prolonged monitoring of subcellular dynamics such as interplays between mitochondria and endoplasmic reticulum, the vesicle transport along microtubules, and the endosome fusion and fission. Moreover, its adaptability to different microscopes and spectra makes it a useful tool for various imaging systems.
引用
收藏
页数:17
相关论文
共 72 条
  • [1] Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections
    Balint, Stefan
    Verdeny Vilanova, Ione
    Sandoval Alvarez, Angel
    Lakadamyali, Melike
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (09) : 3375 - 3380
  • [2] Reconstruction of 3D Cardiac MR Images from 2D Slices Using Directional Total Variation
    Basty, Nicolas
    McClymont, Darryl
    Teh, Irvin
    Schneider, Juergen E.
    Grau, Vicente
    [J]. MOLECULAR IMAGING, RECONSTRUCTION AND ANALYSIS OF MOVING BODY ORGANS, AND STROKE IMAGING AND TREATMENT, 2017, 10555 : 127 - 135
  • [3] Bell S, 2015, PROC CVPR IEEE, P3479, DOI 10.1109/CVPR.2015.7298970
  • [4] Imaging intracellular fluorescent proteins at nanometer resolution
    Betzig, Eric
    Patterson, George H.
    Sougrat, Rachid
    Lindwasser, O. Wolf
    Olenych, Scott
    Bonifacino, Juan S.
    Davidson, Michael W.
    Lippincott-Schwartz, Jennifer
    Hess, Harald F.
    [J]. SCIENCE, 2006, 313 (5793) : 1642 - 1645
  • [5] Boncompain G, 2012, NAT METHODS, V9, P493, DOI [10.1038/NMETH.1928, 10.1038/nmeth.1928]
  • [6] Expansion microscopy
    Chen, Fei
    Tillberg, Paul W.
    Boyden, Edward S.
    [J]. SCIENCE, 2015, 347 (6221) : 543 - 548
  • [7] Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes
    Chen, Jiji
    Sasaki, Hideki
    Lai, Hoyin
    Su, Yijun
    Liu, Jiamin
    Wu, Yicong
    Zhovmer, Alexander
    Combs, Christian A.
    Rey-Suarez, Ivan
    Chang, Hung-Yu
    Huang, Chi Chou
    Li, Xuesong
    Guo, Min
    Nizambad, Srineil
    Upadhyaya, Arpita
    Lee, Shih-Jong J.
    Lucas, Luciano A. G.
    Shroff, Hari
    [J]. NATURE METHODS, 2021, 18 (06) : 678 - +
  • [8] Efficient super-resolution volumetric imaging by radial fluctuation Bayesian analysis light-sheet microscopy
    Chen, Rong
    Zhao, Yuxuan
    Li, Mengna
    Wang, Yarong
    Zhang, Luoying
    Fei, Peng
    [J]. JOURNAL OF BIOPHOTONICS, 2020, 13 (08)
  • [9] Cox S, 2012, NAT METHODS, V9, P195, DOI [10.1038/NMETH.1812, 10.1038/nmeth.1812]
  • [10] Culley S, 2018, NAT METHODS, V15, P263, DOI [10.1038/NMETH.4605, 10.1038/nmeth.4605]