Surrogate-based optimization for variational quantum algorithms

被引:18
|
作者
Shaffer, Ryan [1 ,2 ,3 ]
Kocia, Lucas [2 ]
Sarovar, Mohan [2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Sandia Natl Labs, Quantum Algorithms & Applicat Collaboratory, Livermore, CA 94550 USA
[3] AWS Quantum Technol, Seattle, WA 98170 USA
关键词
722 Computer Systems and Equipment - 921.2 Calculus - 921.5 Optimization Techniques;
D O I
10.1103/PhysRevA.107.032415
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Variational quantum algorithms are a class of techniques intended to be used on near-term quantum computers. The goal of these algorithms is to perform large quantum computations by breaking the problem down into a large number of shallow quantum circuits, complemented by classical optimization and feedback between each circuit execution. One path for improving the performance of these algorithms is to enhance the classical optimization technique. Given the relative ease and abundance of classical computing resources, there is ample opportunity to do so. In this work, we introduce the idea of learning surrogate models for variational circuits using a few experimental measurements, and then performing parameter optimization using these models as opposed to the original data. We demonstrate this idea using a surrogate model based on kernel approximations, through which we reconstruct local patches of variational cost functions using batches of noisy quantum circuit results. Through application to the quantum approximate optimization algorithm and preparation of ground states for molecules, we demonstrate the superiority of surrogate-based optimization over commonly used optimization techniques for variational algorithms.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Surrogate-based analysis and optimization
    Queipo, NV
    Haftka, RT
    Shyy, W
    Goel, T
    Vaidyanathan, R
    Tucker, PK
    PROGRESS IN AEROSPACE SCIENCES, 2005, 41 (01) : 1 - 28
  • [2] Surrogate-Based Superstructure Optimization Framework
    Henao, Carlos A.
    Maravelias, Christos T.
    AICHE JOURNAL, 2011, 57 (05) : 1216 - 1232
  • [3] Recent advances in surrogate-based optimization
    Forrester, Alexander I. J.
    Keane, Andy J.
    PROGRESS IN AEROSPACE SCIENCES, 2009, 45 (1-3) : 50 - 79
  • [4] Surrogate-Based Optimization of SMT Inductors
    Riener, Christian
    Reinbacher-Koestinger, Alice
    Bauernfeind, Thomas
    Kvasnicka, Samuel
    Roppert, Klaus
    Kaltenbacher, Manfred
    2024 IEEE 21ST BIENNIAL CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION, CEFC 2024, 2024,
  • [5] Setting targets for surrogate-based optimization
    Nestor V. Queipo
    Salvador Pintos
    Efrain Nava
    Journal of Global Optimization, 2013, 55 : 857 - 875
  • [6] Variable Reduction for Surrogate-Based Optimization
    Rehbach, Frederik
    Gentile, Lorenzo
    Bartz-Beielstein, Thomas
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 1177 - 1185
  • [7] Setting targets for surrogate-based optimization
    Queipo, Nestor V.
    Pintos, Salvador
    Nava, Efrain
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 55 (04) : 857 - 875
  • [8] Surrogate-based optimization based on the probability of feasibility
    Martin Sohst
    Frederico Afonso
    Afzal Suleman
    Structural and Multidisciplinary Optimization, 2022, 65
  • [9] Surrogate-based optimization based on the probability of feasibility
    Sohst, Martin
    Afonso, Frederico
    Suleman, Afzal
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2022, 65 (01)
  • [10] Faster variational quantum algorithms with quantum kernel-based surrogate models
    Smith, Alistair W. R.
    Paige, A. J.
    Kim, M. S.
    QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (04)