A sufficient condition for restoring sparse vectors from l1 - l2-minimization with cumulative coherence

被引:0
作者
Xie, Youwei [1 ]
Zhang, Meijiao [2 ]
Xie, Shaohua [3 ]
机构
[1] Quanzhou Univ Informat Engn, Gen Educ Ctr, Quanzhou, Peoples R China
[2] Quanzhou Univ Informat Engn, Coll Software, Quanzhou, Peoples R China
[3] Sun Yat Sen Univ, Sch Math, Guangzhou, Peoples R China
关键词
RECOVERY;
D O I
10.1049/ell2.12807
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper focuses on the compressed sensing l(1) - l(2)-minimization model and develops new bounds on cumulative coherence mu(1) (s). It is pointed out that if cumulative coherence mu(1) (s) satisfies Equation (2) or (11), then the sparse signal can stably recover in noise model and exactly recover in free noise by l(1) - l(2)-minimization model.
引用
收藏
页数:3
相关论文
共 5 条
[1]   Shifting Inequality and Recovery of Sparse Signals [J].
Cai, T. Tony ;
Wang, Lie ;
Xu, Guangwu .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) :1300-1308
[2]  
Foucart S., 2013, MATH INTRO COMPRESSI
[3]   Signal recovery under cumulative coherence [J].
Li, Peng ;
Chen, Wengu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 346 :399-417
[4]  
Wang W.D., 2019, ELECTRON LETT, V55, P1199
[5]  
Zhao YB, 2014, J OPER RES SOC CHINA, V2, P171, DOI 10.1007/s40305-014-0043-1