Inhibitory Peptide of Soluble Guanylyl Cyclase/Trx1 Interface Blunts the Dual Redox Signaling Functions of the Complex

被引:1
作者
Cui, Chuanlong [1 ,2 ]
Shu, Ping [2 ]
Sadeghian, Tanaz [1 ]
Younis, Waqas [2 ]
Li, Hong [3 ]
Beuve, Annie [2 ]
机构
[1] Rutgers State Univ, Sch Grad Studies, Newark Hlth Sci Campus, Newark, NJ 07103 USA
[2] Rutgers State Univ, New Jersey Med Sch, Dept Physiol Pharmacol & Neurosci, Newark, NJ 07103 USA
[3] Rutgers State Univ, Ctr Adv Prote Res, New Jersey Med Sch, Dept Microbiol Biochem & Mol Genet, Newark, NJ 07103 USA
基金
美国国家卫生研究院;
关键词
thioredoxin; oxidative stress; NO; transnitrosation; mimetic peptide; soluble guanylyl cyclase; protein-protein interaction; S-nitrosylation; reductase; S-NITROSYLATION; NITRIC-OXIDE; HUMAN THIOREDOXIN-1; NITROSATION; OXIDATION; DESENSITIZATION; IDENTIFICATION; SURVIVAL; STRESS;
D O I
10.3390/antiox12040906
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Soluble guanylyl cyclase (GC1) and oxido-reductase thioredoxin (Trx1) form a complex that mediates two NO signaling pathways as a function of the redox state of cells. Under physiological conditions, reduced Trx1 (rTrx1) supports the canonical NO-GC1-cGMP pathway by protecting GC1 activity from thiol oxidation. Under oxidative stress, the NO-cGMP pathway is disrupted by the S-nitrosation of GC1 (addition of a NO group to a cysteine). In turn, SNO-GC1 initiates transnitrosation cascades, using oxidized thioredoxin (oTrx1) as a nitrosothiol relay. We designed an inhibitory peptide that blocked the interaction between GC1 and Trx1. This inhibition resulted in the loss of a) the rTrx1 enhancing effect of GC1 cGMP-forming activity in vitro and in cells and its ability to reduce the multimeric oxidized GC1 and b) GC1's ability to fully reduce oTrx1, thus identifying GC1 novel reductase activity. Moreover, an inhibitory peptide blocked the transfer of S-nitrosothiols from SNO-GC1 to oTrx1. In Jurkat T cells, oTrx1 transnitrosates procaspase-3, thereby inhibiting caspase-3 activity. Using the inhibitory peptide, we demonstrated that S-nitrosation of caspase-3 is the result of a transnitrosation cascade initiated by SNO-GC1 and mediated by oTrx1. Consequently, the peptide significantly increased caspase-3 activity in Jurkat cells, providing a promising therapy for some cancers.
引用
收藏
页数:15
相关论文
共 30 条
  • [1] Selective cysteines oxidation in soluble guanylyl cyclase catalytic domain is involved in NO activation
    Alapa, Maryam
    Cui, Chuanlong
    Shu, Ping
    Li, Hong
    Kholodovych, Vlad
    Beuve, Annie
    [J]. FREE RADICAL BIOLOGY AND MEDICINE, 2021, 162 : 450 - 460
  • [2] Physiological functions of thioredoxin and thioredoxin reductase
    Arnér, ESJ
    Holmgren, A
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (20): : 6102 - 6109
  • [3] Oxidants, Antioxidants and Thiol Redox Switches in the Control of Regulated Cell Death Pathways
    Benhar, Moran
    [J]. ANTIOXIDANTS, 2020, 9 (04)
  • [4] Identification of novel S-nitrosation sites in soluble guanylyl cyclase, the nitric oxide receptor
    Beuve, Annie
    Wu, Changgong
    Cui, Chuanlong
    Liu, Tong
    Jain, Mohit Raja
    Huang, Can
    Yan, Lin
    Kholodovych, Vladyslav
    Li, Hong
    [J]. JOURNAL OF PROTEOMICS, 2016, 138 : 40 - 47
  • [5] Androgen regulation of soluble guanylyl cyclaseα1 mediates prostate cancer cell proliferation
    Cai, C.
    Chen, S-Y
    Zheng, Z.
    Omwancha, J.
    Lin, M-F
    Balk, S. P.
    Shemshedini, L.
    [J]. ONCOGENE, 2007, 26 (11) : 1606 - 1615
  • [6] Soluble guanylyl cyclase is a target of angiotensin II-induced nitrosative stress in a hypertensive rat model
    Crassous, Pierre-Antoine
    Couloubaly, Samba
    Huang, Can
    Zhou, Zongmin
    Baskaran, Padmamalini
    Kim, David D.
    Papapetropoulos, Andreas
    Fioramonti, Xavier
    Duran, Walter N.
    Beuve, Annie
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2012, 303 (05): : H597 - H604
  • [7] Soluble guanylyl cyclase mediates noncanonical nitric oxide signaling by nitrosothiol transfer under oxidative stress
    Cui, Chuanlong
    Wu, Changgong
    Shu, Ping
    Liu, Tong
    Li, Hong
    Beuve, Annie
    [J]. REDOX BIOLOGY, 2022, 55
  • [8] Protein S-nitrosylation in health and disease: a current perspective
    Foster, Matthew W.
    Hess, Douglas T.
    Stamler, Jonathan S.
    [J]. TRENDS IN MOLECULAR MEDICINE, 2009, 15 (09) : 391 - 404
  • [9] Downregulation of thioredoxin-1-dependent CD95 S-nitrosation by Sorafenib reduces liver cancer
    Gonzalez, Raul
    Rodriguez-Hernandez, Maria A.
    Negrete, Maria
    Ranguelova, Kalina
    Rossin, Aurelie
    Choya-Foces, Carmen
    de la Cruz-Ojeda, Patricia
    Miranda-Vizuete, Antonio
    Martinez-Ruiz, Antonio
    Rius-Perez, Sergio
    Sastre, Juan
    Barcena, Jose A.
    Hueber, Anne-Odile
    Alicia Padilla, C.
    Muntane, Jordi
    [J]. REDOX BIOLOGY, 2020, 34
  • [10] Regulation of the catalytic activity and structure of human thioredoxin 1 via oxidation and S-nitrosylation of cysteine residues
    Hashemy, Seyed Isaac
    Holmgren, Arne
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (32) : 21890 - 21898