Combination of Hairy Root and Whole-Plant Transformation Protocols to Achieve Efficient CRISPR/Cas9 Genome Editing in Soybean

被引:4
|
作者
Kong, Qihui [1 ,2 ]
Li, Jie [1 ]
Wang, Shoudong [2 ,3 ]
Feng, Xianzhong [2 ,3 ]
Shou, Huixia [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Life Sci, State Key Lab Plant Physiol & Biochem, Hangzhou 310058, Peoples R China
[2] Zhejiang Lab, Hangzhou 310012, Peoples R China
[3] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Key Lab Soybean Mol Design Breeding, Changchun 130102, Peoples R China
来源
PLANTS-BASEL | 2023年 / 12卷 / 05期
关键词
soybean transformation; CRISPR; Cas9; hairy root; genome-editing; AGROBACTERIUM-RHIZOGENES; MEDIATED TRANSFORMATION; TARGETED MUTAGENESIS; SEED; TOOL; DNA;
D O I
10.3390/plants12051017
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The new gene-editing technology CRISPR/Cas system has been widely used for genome engineering in various organisms. Since the CRISPR/Cas gene-editing system has a certain possibility of low efficiency and the whole plant transformation of soybean is time-consuming and laborious, it is important to evaluate the editing efficiency of designed CRISPR constructs before the stable whole plant transformation process starts. Here, we provide a modified protocol for generating transgenic hairy soybean roots to assess the efficiency of guide RNA (gRNA) sequences of the CRISPR/Cas constructs within 14 days. The cost- and space-effective protocol was first tested in transgenic soybean harboring the GUS reporter gene for the efficiency of different gRNA sequences. Targeted DNA mutations were detected in 71.43-97.62% of the transgenic hairy roots analyzed as evident by GUS staining and DNA sequencing of the target region. Among the four designed gene-editing sites, the highest editing efficiency occurred at the 3 ' terminal of the GUS gene. In addition to the reporter gene, the protocol was tested for the gene-editing of 26 soybean genes. Among the gRNAs selected for stable transformation, the editing efficiency of hairy root transformation and stable transformation ranged from 5% to 88.8% and 2.7% to 80%, respectively. The editing efficiencies of stable transformation were positively correlated with those of hairy root transformation with a Pearson correlation coefficient (r) of 0.83. Our results demonstrated that soybean hairy root transformation could rapidly assess the efficiency of designed gRNA sequences on genome editing. This method can not only be directly applied to the functional study of root-specific genes, but more importantly, it can be applied to the pre-screening of gRNA in CRISPR/Cas gene editing.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] CRISPR/Cas9 genome editing in wheat
    Dongjin Kim
    Burcu Alptekin
    Hikmet Budak
    Functional & Integrative Genomics, 2018, 18 : 31 - 41
  • [32] CRISPR/Cas9 genome editing in wheat
    Kim, Dongjin
    Alptekin, Burcu
    Budak, Hikmet
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2018, 18 (01) : 31 - 41
  • [33] A review on molecular scissoring with CRISPR/Cas9 genome editing technology
    Irfan, Muskan
    Majeed, Hammad
    Iftikhar, Tehreema
    Ravi, Pritam Kumar
    TOXICOLOGY RESEARCH, 2024, 13 (04)
  • [34] Efficient Genome Editing in Apple Using a CRISPR/Cas9 system
    Nishitani, Chikako
    Hirai, Narumi
    Komori, Sadao
    Wada, Masato
    Okada, Kazuma
    Osakabe, Keishi
    Yamamoto, Toshiya
    Osakabe, Yuriko
    SCIENTIFIC REPORTS, 2016, 6
  • [35] Systems of Delivery of CRISPR/Cas9 Ribonucleoprotein Complexes for Genome Editing
    Amirkhanov, R. N.
    Stepanov, G. A.
    RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY, 2019, 45 (06) : 431 - 437
  • [36] The CRISPR/Cas9 system and its applications in crop genome editing
    Bao, Aili
    Burritt, David J.
    Chen, Haifeng
    Zhou, Xinan
    Cao, Dong
    Lam-Son Phan Tran
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 2019, 39 (03) : 321 - 336
  • [37] Efficient multiplex genome editing by CRISPR/Cas9 in common wheat
    Li, Jihu
    Zhang, Shujuan
    Zhang, Rongzhi
    Gao, Jie
    Qi, Yiping
    Song, Guoqi
    Li, Wei
    Li, Yulian
    Li, Genying
    PLANT BIOTECHNOLOGY JOURNAL, 2021, 19 (03) : 427 - 429
  • [38] Advances in CRISPR/Cas9 Genome Editing for the Treatment of Muscular Dystrophies
    Fatehi, Sina
    Marks, Ryan M.
    Rok, Matthew J.
    Perillat, Lucie
    Ivakine, Evgueni A.
    Cohn, Ronald D.
    HUMAN GENE THERAPY, 2023, 34 (9-10) : 388 - 403
  • [39] Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata
    Kirchner, Thomas W.
    Niehaus, Markus
    Debener, Thomas
    Schenk, Manfred K.
    Herde, Marco
    PLOS ONE, 2017, 12 (09):
  • [40] Editing plant genomes with CRISPR/Cas9
    Belhaj, Khaoula
    Chaparro-Garcia, Angela
    Kamoun, Sophien
    Patron, Nicola J.
    Nekrasov, Vladimir
    CURRENT OPINION IN BIOTECHNOLOGY, 2015, 32 : 76 - 84