Combination of Hairy Root and Whole-Plant Transformation Protocols to Achieve Efficient CRISPR/Cas9 Genome Editing in Soybean

被引:4
|
作者
Kong, Qihui [1 ,2 ]
Li, Jie [1 ]
Wang, Shoudong [2 ,3 ]
Feng, Xianzhong [2 ,3 ]
Shou, Huixia [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Life Sci, State Key Lab Plant Physiol & Biochem, Hangzhou 310058, Peoples R China
[2] Zhejiang Lab, Hangzhou 310012, Peoples R China
[3] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Key Lab Soybean Mol Design Breeding, Changchun 130102, Peoples R China
来源
PLANTS-BASEL | 2023年 / 12卷 / 05期
关键词
soybean transformation; CRISPR; Cas9; hairy root; genome-editing; AGROBACTERIUM-RHIZOGENES; MEDIATED TRANSFORMATION; TARGETED MUTAGENESIS; SEED; TOOL; DNA;
D O I
10.3390/plants12051017
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The new gene-editing technology CRISPR/Cas system has been widely used for genome engineering in various organisms. Since the CRISPR/Cas gene-editing system has a certain possibility of low efficiency and the whole plant transformation of soybean is time-consuming and laborious, it is important to evaluate the editing efficiency of designed CRISPR constructs before the stable whole plant transformation process starts. Here, we provide a modified protocol for generating transgenic hairy soybean roots to assess the efficiency of guide RNA (gRNA) sequences of the CRISPR/Cas constructs within 14 days. The cost- and space-effective protocol was first tested in transgenic soybean harboring the GUS reporter gene for the efficiency of different gRNA sequences. Targeted DNA mutations were detected in 71.43-97.62% of the transgenic hairy roots analyzed as evident by GUS staining and DNA sequencing of the target region. Among the four designed gene-editing sites, the highest editing efficiency occurred at the 3 ' terminal of the GUS gene. In addition to the reporter gene, the protocol was tested for the gene-editing of 26 soybean genes. Among the gRNAs selected for stable transformation, the editing efficiency of hairy root transformation and stable transformation ranged from 5% to 88.8% and 2.7% to 80%, respectively. The editing efficiencies of stable transformation were positively correlated with those of hairy root transformation with a Pearson correlation coefficient (r) of 0.83. Our results demonstrated that soybean hairy root transformation could rapidly assess the efficiency of designed gRNA sequences on genome editing. This method can not only be directly applied to the functional study of root-specific genes, but more importantly, it can be applied to the pre-screening of gRNA in CRISPR/Cas gene editing.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] CRISPR/Cas9 for plant genome editing: accomplishments, problems and prospects
    Paul, Joseph W., III
    Qi, Yiping
    PLANT CELL REPORTS, 2016, 35 (07) : 1417 - 1427
  • [2] CRISPR/Cas9 genome editing through in planta transformation
    Zlobin, Nikolay E.
    Lebedeva, Marina V.
    Taranov, Vasiliy V.
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 2020, 40 (02) : 153 - 168
  • [3] The CRISPR/Cas9 system for plant genome editing and beyond
    Bortesi, Luisa
    Fischer, Rainer
    BIOTECHNOLOGY ADVANCES, 2015, 33 (01) : 41 - 52
  • [4] A sequential transformation method for validating soybean genome editing by CRISPR/Cas9 system
    Trinh, Duy Dinh
    Le, Ngoc Thu
    Bui, Thao Phuong
    Le, Thao Nhu Thi
    Nguyen, Cuong Xuan
    Chu, Ha Hoang
    Do, Phat Tien
    SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2022, 29 (10)
  • [5] Efficient Genome Editing Using CRISPR/Cas9 Technology in Chicory
    Bernard, Guillaume
    Gagneul, David
    Dos Santos, Harmony Alves
    Etienne, Audrey
    Hilbert, Jean-Louis
    Rambaud, Caroline
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (05)
  • [6] Efficient Genome Editing in Setaria italica Using CRISPR/Cas9 and Base Editors
    Liang, Zhen
    Wu, Yuqing
    Ma, Lingling
    Guo, Yingjie
    Ran, Yidong
    FRONTIERS IN PLANT SCIENCE, 2022, 12
  • [7] CRISPR/Cas9-Mediated Genome Editing in Soybean Hairy Roots
    Cai, Yupeng
    Chen, Li
    Liu, Xiujie
    Sun, Shi
    Wu, Cunxiang
    Jiang, Bingjun
    Han, Tianfu
    Hou, Wensheng
    PLOS ONE, 2015, 10 (08):
  • [8] Hairy CRISPR: Genome Editing in Plants Using Hairy Root Transformation
    Kiryushkin, Alexey S.
    Ilina, Elena L.
    Guseva, Elizaveta D.
    Pawlowski, Katharina
    Demchenko, Kirill N.
    PLANTS-BASEL, 2022, 11 (01):
  • [9] Two efficient CRISPR/Cas9 systems for gene editing in soybean
    Carrijo, Jessica
    Illa-Berenguer, Eudald
    LaFayette, Peter
    Torres, Nathalia
    Aragao, Francisco J. L.
    Parrott, Wayne
    Vianna, Giovanni R.
    TRANSGENIC RESEARCH, 2021, 30 (03) : 239 - 249
  • [10] CRISPR/Cas9 and Genome Editing in Drosophila
    Bassett, Andrew R.
    Liu, Ji-Long
    JOURNAL OF GENETICS AND GENOMICS, 2014, 41 (01) : 7 - 19