A Deep Learning Approach for Diabetic Foot Ulcer Classification and Recognition

被引:23
作者
Ahsan, Mehnoor [1 ]
Naz, Saeeda [1 ]
Ahmad, Riaz [2 ]
Ehsan, Haleema [1 ]
Sikandar, Aisha [1 ]
机构
[1] GGPGC 1, Comp Sci Dept, Abbottabad 22020, Pakistan
[2] Shaheed Benazir Bhutto Univ, Comp Sci Dept, Upper Dir 00384, Pakistan
关键词
DFU; AlexNet; VGG16; 19; GoogLeNet; ResNet50; 101; MobileNet; SqueezeNet; DenseNet; PREVENTION;
D O I
10.3390/info14010036
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Diabetic foot ulcer (DFU) is one of the major complications of diabetes and results in the amputation of lower limb if not treated timely and properly. Despite the traditional clinical approaches used in DFU classification, automatic methods based on a deep learning framework show promising results. In this paper, we present several end-to-end CNN-based deep learning architectures, i.e., AlexNet, VGG16/19, GoogLeNet, ResNet50.101, MobileNet, SqueezeNet, and DenseNet, for infection and ischemia categorization using the benchmark dataset DFU2020. We fine-tune the weight to overcome a lack of data and reduce the computational cost. Affine transform techniques are used for the augmentation of input data. The results indicate that the ResNet50 achieves the highest accuracy of 99.49% and 84.76% for Ischaemia and infection, respectively.
引用
收藏
页数:10
相关论文
共 28 条
  • [1] Diabetic foot ulcer classification using mapped binary patterns and convolutional neural networks
    Al-Garaawi, Nora
    Ebsim, Raja
    Alharan, Abbas F. H.
    Yap, Moi Hoon
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 140
  • [2] DFU_QUTNet: diabetic foot ulcer classification using novel deep convolutional neural network
    Alzubaidi, Laith
    Fadhel, Mohammed A.
    Oleiwi, Sameer R.
    Al-Shamma, Omran
    Zhang, Jinglan
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (21-22) : 15655 - 15677
  • [3] Deep transfer learning for alzheimer neurological disorder detection
    Ashraf, Abida
    Naz, Saeeda
    Shirazi, Syed Hamad
    Razzak, Imran
    Parsad, Mukesh
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (20) : 30117 - 30142
  • [4] Automated methods for diagnosis of Parkinson's disease and predicting severity level
    Ayaz, Zainab
    Naz, Saeeda
    Khan, Naila Habib
    Razzak, Imran
    Imran, Muhammad
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (20) : 14499 - 14534
  • [5] IWGDF guidance on the prevention of foot ulcers in at-risk patients with diabetes
    Bus, S. A.
    van Netten, J. J.
    Lavery, L. A.
    Monteiro-Soares, M.
    Rasmussen, A.
    Jubiz, Y.
    Price, P. E.
    [J]. DIABETES-METABOLISM RESEARCH AND REVIEWS, 2016, 32 : 16 - 24
  • [6] Cost of treating diabetic foot ulcers in five different countries
    Cavanagh, Peter
    Attinger, Christopher
    Abbas, Zulfiqarali
    Bal, Arun
    Rojas, Nina
    Xu, Zhang-Rong
    [J]. DIABETES-METABOLISM RESEARCH AND REVIEWS, 2012, 28 : 107 - 111
  • [7] Patient perspectives on the physical, psycho-social, and financial impacts of diabetic foot ulceration and amputation
    Crocker, Rebecca M.
    Palmer, Kelly N. B.
    Marrero, David G.
    Tan, Tze-Woei
    [J]. JOURNAL OF DIABETES AND ITS COMPLICATIONS, 2021, 35 (08)
  • [8] Recognition of ischaemia and infection in diabetic foot ulcers: Dataset and techniques
    Goyal, Manu
    Reeves, Neil D.
    Rajbhandari, Satyan
    Ahmad, Naseer
    Wang, Chuan
    Yap, Moi Hoon
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 117
  • [9] DFUNet: Convolutional Neural Networks for Diabetic Foot Ulcer Classification
    Goyal, Manu
    Reeves, Neil D.
    Davison, Adrian K.
    Rajbhandari, Satyan
    Spragg, Jennifer
    Yap, Moi Hoon
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2020, 4 (05): : 728 - 739
  • [10] Densely Connected Convolutional Networks
    Huang, Gao
    Liu, Zhuang
    van der Maaten, Laurens
    Weinberger, Kilian Q.
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2261 - 2269