Essential Characteristics of Memristors for Neuromorphic Computing

被引:75
作者
Chen, Wenbin [1 ]
Song, Lekai [2 ]
Wang, Shengbo [1 ]
Zhang, Zhiyuan [1 ]
Wang, Guanyu [1 ]
Hu, Guohua [2 ]
Gao, Shuo [1 ]
机构
[1] Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
[2] Chinese Univ Hong Kong, Dept Elect Engn, Shatin, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
memristors; neural networks; neuromorphic computing; reliability; variability; MAGNETIC TUNNEL-JUNCTIONS; PHASE-CHANGE MEMORY; RESISTIVE SWITCHING BEHAVIOR; ROOM-TEMPERATURE; LARGE MAGNETORESISTANCE; SPIKING NEURONS; NEURAL-NETWORKS; HIGH-SPEED; NONVOLATILE; RESISTANCE;
D O I
10.1002/aelm.202200833
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The memristor is a resistive switch where its resistive state is programable based on the applied voltage or current. Memristive devices are thus capable of storing and computing information simultaneously, breaking the Von Neumann bottleneck. Since the first nanomemristor made by Hewlett-Packard in 2008, advances so far have enabled nanostructured, low-power, high-durability devices that exhibit superior performance over conventional CMOS devices. Herein, the development of memristors based on different physical mechanisms is reviewed. In particular, device stability, integration density, power consumption, switching speed, retention, and endurance of memristors, that are crucial for neuromorphic computing, are discussed in detail. An overview of various neural networks with a focus on building a memristor-based spike neural network neuromorphic computing system is then provided. Finally, the existing issues and challenges in implementing such neuromorphic computing systems are analyzed, and an outlook for brain-like computing is proposed.
引用
收藏
页数:31
相关论文
共 295 条
[21]   Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches -: art. no. 054416 [J].
Butler, WH ;
Zhang, XG ;
Schulthess, TC ;
MacLaren, JM .
PHYSICAL REVIEW B, 2001, 63 (05)
[22]   Irreversible modification of Ge2Sb2Te5 phase change material by nanometer-thin Ti adhesion layers in a device-compatible stack [J].
Cabral, C., Jr. ;
Chen, K. N. ;
Krusin-Elbaum, L. ;
Deline, V. .
APPLIED PHYSICS LETTERS, 2007, 90 (05)
[23]   Tuning a Binary Ferromagnet into a Multistate Synapse with Spin-Orbit-Torque-Induced Plasticity [J].
Cao, Yi ;
Rushforth, Andrew W. ;
Sheng, Yu ;
Zheng, Houzhi ;
Wang, Kaiyou .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (25)
[24]   A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit [J].
Chakrabarti, B. ;
Lastras-Montano, M. A. ;
Adam, G. ;
Prezioso, M. ;
Hoskins, B. ;
Cheng, K. -T. ;
Strukov, D. B. .
SCIENTIFIC REPORTS, 2017, 7
[25]  
Chang L. L., 1971, IBM Technical Disclosure Bulletin, V14, P1250
[26]  
Chanthbouala A, 2012, NAT NANOTECHNOL, V7, P101, DOI [10.1038/nnano.2011.213, 10.1038/NNANO.2011.213]
[27]   Giant nonvolatile manipulation of magnetoresistance in magnetic tunnel junctions by electric fields via magnetoelectric coupling [J].
Chen, Aitian ;
Wen, Yan ;
Fang, Bin ;
Zhao, Yuelei ;
Zhang, Qiang ;
Chang, Yuansi ;
Li, Peisen ;
Wu, Hao ;
Huang, Haoliang ;
Lu, Yalin ;
Zeng, Zhongming ;
Cai, Jianwang ;
Han, Xiufeng ;
Wu, Tom ;
Zhang, Xi-Xiang ;
Zhao, Yonggang .
NATURE COMMUNICATIONS, 2019, 10 (1)
[28]   Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories [J].
Chen, Jui-Yuan ;
Hsin, Cheng-Lun ;
Huang, Chun-Wei ;
Chiu, Chung-Hua ;
Huang, Yu-Ting ;
Lin, Su-Jien ;
Wu, Wen-Wei ;
Chen, Lih-Juann .
NANO LETTERS, 2013, 13 (08) :3671-3677
[29]   High Performance MgO-barrier Magnetic Tunnel Junctions for Flexible and Wearable Spintronic Applications [J].
Chen, Jun-Yang ;
Lau, Yong-Chang ;
Coey, J. M. D. ;
Li, Mo ;
Wang, Jian-Ping .
SCIENTIFIC REPORTS, 2017, 7
[30]   COMPOUND MATERIALS FOR REVERSIBLE, PHASE-CHANGE OPTICAL-DATA STORAGE [J].
CHEN, M ;
RUBIN, KA ;
BARTON, RW .
APPLIED PHYSICS LETTERS, 1986, 49 (09) :502-504