Numerical solution of delay fractional optimal control problems with free terminal time

被引:9
|
作者
Liu, Chongyang [1 ,2 ]
Gong, Zhaohua [1 ]
Wang, Song [2 ]
Teo, Kok Lay [3 ,4 ]
机构
[1] Shandong Technol & Business Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
[2] Curtin Univ, Sch Elect Engn Comp & Math Sci, Perth, WA 6845, Australia
[3] Sunway Univ, Sch Math Sci, Kuala Lumpur 47500, Malaysia
[4] Tianjin Univ Finance & Econ, Coordinated Innovat Ctr Computable Modeling Manag, Tianjin 300222, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Fractional time-delay system; Optimal control; Free terminal time; Time-scaling transformation; Numerical optimization; 2ND-ORDER SUFFICIENT CONDITIONS; FREE-FINAL-TIME; COMPUTATIONAL METHOD;
D O I
10.1007/s11590-022-01926-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper considers a class of delay fractional optimal control problems with free terminal time. The fractional derivatives in this class of problems are described in the Caputo sense and they can be of different orders. We first show that for this class of problems, the well-known time-scaling transformation for mapping the free time horizon into a fixed time interval yields a new fractional-order system with variable time-delay. Then, we propose an explicit numerical scheme for solving the resulting fractional time-delay system, which gives rise to a discrete-time optimal control problem. Furthermore, we derive gradient formulas of the cost and constraint functions with respect to decision variables. On this basis, a gradient-based optimization approach is developed to solve the resulting discrete-time optimal control problem. Finally, an example problems is solved to demonstrate the effectiveness of our proposed solution approach.
引用
收藏
页码:1359 / 1378
页数:20
相关论文
共 50 条
  • [41] USE OF MAXIMUM PRINCIPLE FOR NUMERICAL SOLUTION OF OPTIMAL CONTROL PROBLEMS WITH TERMINAL CONSTRAINTS.
    Srochko, V.A.
    Cybernetics, 1986, 22 (01): : 86 - 93
  • [42] Numerical solution of nonlinear fractal-fractional optimal control problems by Legendre polynomials
    Heydari, Mohammad Hossein
    Atangana, Abdon
    Avazzadeh, Zakieh
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) : 2952 - 2963
  • [43] Numerical solution of nonlinear fractional optimal control problems using generalized Bernoulli polynomials
    Hassani, Hossein
    Tenreiro Machado, Jose Antonio
    Hosseini Asl, Mohammad Kazem
    Dahaghin, Mohammad Shafi
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2021, 42 (04): : 1045 - 1063
  • [44] A NEW COMPUTATIONAL METHOD FOR A CLASS OF FREE TERMINAL TIME OPTIMAL CONTROL PROBLEMS
    Lin, Qun
    Loxton, Ryan
    Teo, Kok Lay
    Wu, Yong Hong
    PACIFIC JOURNAL OF OPTIMIZATION, 2011, 7 (01): : 63 - 81
  • [45] The instability of optimal control problems to time delay
    Matveev, AS
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 43 (05) : 1757 - 1786
  • [46] Numerical methods for solving terminal optimal control problems
    Gornov, A. Yu.
    Tyatyushkin, A. I.
    Finkelstein, E. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2016, 56 (02) : 221 - 234
  • [47] Numerical methods for solving terminal optimal control problems
    A. Yu. Gornov
    A. I. Tyatyushkin
    E. A. Finkelstein
    Computational Mathematics and Mathematical Physics, 2016, 56 : 221 - 234
  • [48] Direct Numerical Solution of Optimal Control Problems
    Rath, Gerhard
    Harker, Matthew
    2016 5TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2016, : 304 - 308
  • [49] NUMERICAL SOLUTION OF CERTAIN OPTIMAL CONTROL PROBLEMS
    ABADIE, J
    BICHARA, M
    REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1973, 7 (20): : 77 - 105
  • [50] A numerical technique for solving fractional optimal control problems
    Lotfi, A.
    Dehghan, Mehdi
    Yousefi, S. A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1055 - 1067