In this paper, we study the stability and instability of plane wave solutions to semilinear systems of wave equations satisfying the null condition. We identify a condition that allows us to prove the global nonlinear asymptotic stability of the plane wave. The proof of global stability requires us to analyze the geometry of the interaction between the background plane wave and the perturbation. When this condition is not met, we are able to prove linear instability assuming an additional genericity condition. The linear instability is shown using a geometric optics ansatz.
机构:
Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol, Dept Math Sci, Daejeon 34141, South Korea
Kim, Yong-Jung
Mimura, Masayasu
论文数: 0引用数: 0
h-index: 0
机构:
Meiji Univ, Meiji Inst Adv Study Math Sci, 4-21-1 Nakano,Nakano Ku, Tokyo 1648525, JapanKorea Adv Inst Sci & Technol, Dept Math Sci, Daejeon 34141, South Korea
Mimura, Masayasu
Yoon, Changwook
论文数: 0引用数: 0
h-index: 0
机构:
Chungnam Natl Univ, Dept Math Educ, Daejeon 34134, South KoreaKorea Adv Inst Sci & Technol, Dept Math Sci, Daejeon 34141, South Korea
机构:
Tokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528551, JapanTokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528551, Japan
Kagei, Yoshiyuki
Takeda, Hiroshi
论文数: 0引用数: 0
h-index: 0
机构:
Fukuoka Inst Technol, Fac Engn, Dept Intelligent Mech Engn, 3-30-1 Wajirohigashi,Higashi Ku, Fukuoka 8110295, JapanTokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528551, Japan
机构:
Univ Tokushima, Fac Integrated Arts & Sci, Dept Mat Sci, Tokushima 770, JapanUniv Tokushima, Fac Integrated Arts & Sci, Dept Mat Sci, Tokushima 770, Japan