Wellposedness of impulsive functional abstract second-order differential equations with state-dependent delay

被引:0
作者
Karthikeyan, Kulandhivel [3 ]
Tamizharasan, Dhatchinamoorthy [4 ]
Abdeljawad, Thabet [1 ,2 ]
Nisar, Kottakkaran Sooppy [5 ]
机构
[1] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh, Saudi Arabia
[2] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[3] KPR Inst Engn & Technol, Ctr Res & Dev, Dept Math, Coimbatore, Tamil Nadu, India
[4] KS Rangasamy Coll Technol, Dept Math, Namakkal, Tamil Nadu, India
[5] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser 11991, Saudi Arabia
关键词
cosine function; impulsive neutral equation; state dependent delay; wellposedness; EVOLUTION SYSTEMS; APPROXIMATE CONTROLLABILITY; EXISTENCE; PARAMETERS; INCLUSIONS; DISCRETE; DYNAMICS; RESPECT; MODEL;
D O I
10.1515/ijnsns-2021-0160
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study investigates the functional abstract second order impulsive differential equation with state-dependent delay. The major result of this study is that the abstract second-order impulsive differential equation with state-dependent delay system has at least one solution and is unique. After that, the wellposed condition is defined. Following that, we look at whether the proposed problem is wellposed. Finally, some illustrations of our findings are provided.
引用
收藏
页码:1355 / 1368
页数:14
相关论文
共 50 条
[1]   ANALYSIS OF A MODEL REPRESENTING STAGE-STRUCTURED POPULATION-GROWTH WITH STATE-DEPENDENT TIME-DELAY [J].
AIELLO, WG ;
FREEDMAN, HI ;
WU, J .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (03) :855-869
[2]  
[Anonymous], 2004, J. Math. Sci., DOI DOI 10.1023/B:JOTH.0000029697.92324.47
[3]   Existence and controllability results for second-order impulsive stochastic evolution systems with state-dependent delay [J].
Arthi, G. ;
Park, Ju H. ;
Jung, H. Y. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 248 :328-341
[4]  
Bainov D. D., 1993, IMPULSIVE DIFFERENTI
[5]  
Benchohra M., 2006, Impulsive Differential equations and Inclusions
[6]  
Büger M, 2004, Z ANGEW MATH PHYS, V55, P547, DOI [10.1007/s00033-004-0054-6, 10.1007/s00033-004-005-6]
[7]  
Chang YK, 2009, DIFFER EQUAT APPL, V1, P325
[8]   Existence for impulsive neutral integrodifferential inclusions with nonlocal initial conditions via fractional operators [J].
Chang, Yong-Kui ;
Anguraj, A. ;
Karthikeyan, K. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4377-4386
[9]   Dynamics of second order in time evolution equations with state-dependent delay [J].
Chueshov, Igor ;
Rezounenko, Alexander .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 123-124 :126-149
[10]   EXISTENCE OF SOLUTION AND APPROXIMATE CONTROLLABILITY OF A SECOND-ORDER NEUTRAL STOCHASTIC DIFFERENTIAL EQUATION WITH STATE DEPENDENT DELAY [J].
Das, Sanjukta ;
Pandey, Dwijendra ;
Sukavanam, N. .
ACTA MATHEMATICA SCIENTIA, 2016, 36 (05) :1509-1523