From Ensemble Clustering to Subspace Clustering: Cluster Structure Encoding

被引:23
作者
Tao, Zhiqiang [1 ]
Li, Jun [2 ]
Fu, Huazhu [3 ]
Kong, Yu [4 ]
Fu, Yun [5 ,6 ]
机构
[1] Santa Clara Univ, Dept Comp Sci & Engn, Santa Clara, CA 95053 USA
[2] MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] ASTAR, Inst High Performance Comp IHPC, Singapore 138632, Singapore
[4] Rochester Inst Technol, B Thomas Golisano Coll Comp & Informat Sci, Rochester, NY 14623 USA
[5] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[6] Northeastern Univ, Khoury Coll Comp & Informat Sci, Boston, MA 02115 USA
关键词
Encoding; Codes; Clustering algorithms; Predictive coding; Optimization; Training; Sparse matrices; Encoder network; ensemble clustering (EC); higher order relationship; subspace clustering (SC); SPARSE; ALGORITHM; CONSENSUS;
D O I
10.1109/TNNLS.2021.3107354
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, we propose a novel algorithm to encode the cluster structure by incorporating ensemble clustering (EC) into subspace clustering (SC). First, the low-rank representation (LRR) is learned from a higher order data relationship induced by ensemble K-means coding, which exploits the cluster structure in a co-association matrix of basic partitions (i.e., clustering results). Second, to provide a fast predictive coding mechanism, an encoding function parameterized by neural networks is introduced to predict the LRR derived from partitions. These two steps are jointly proceeded to seamlessly integrate partition information and original features and thus deliver better representations than the ones obtained from each single source. Moreover, an alternating optimization framework is developed to learn the LRR, train the encoding function, and fine-tune the higher order relationship. Extensive experiments on eight benchmark datasets validate the effectiveness of the proposed algorithm on several clustering tasks compared with state-of-the-art EC and SC methods.
引用
收藏
页码:2670 / 2681
页数:12
相关论文
共 50 条
  • [41] Active Block Diagonal Subspace Clustering
    Xie, Ziqi
    Wang, Lihong
    IEEE ACCESS, 2021, 9 (09): : 83976 - 83992
  • [42] Structured Sparse Subspace Clustering: A Joint Affinity Learning and Subspace Clustering Framework
    Li, Chun-Guang
    You, Chong
    Vidal, Rene
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (06) : 2988 - 3001
  • [43] An Agglomerative Hierarchical Clustering Framework for Improving the Ensemble Clustering Process
    Jafarzadegan, Mohammad
    Safi-Esfahani, Faramarz
    Beheshti, Zahra
    CYBERNETICS AND SYSTEMS, 2022, 53 (08) : 679 - 701
  • [44] Attention reweighted sparse subspace clustering
    Wang, Libin
    Wang, Yulong
    Deng, Hao
    Chen, Hong
    PATTERN RECOGNITION, 2023, 139
  • [45] Maximum Entropy Subspace Clustering Network
    Peng, Zhihao
    Jia, Yuheng
    Liu, Hui
    Hou, Junhui
    Zhang, Qingfu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) : 2199 - 2210
  • [46] Sparse Subspace Clustering for Stream Data
    Chen, Ken
    Tang, Yong
    Wei, Long
    Wang, Pengfei
    Liu, Yong
    Jin, Zhongming
    IEEE ACCESS, 2021, 9 : 57271 - 57279
  • [47] Projective Multiple Kernel Subspace Clustering
    Sun, Mengjing
    Wang, Siwei
    Zhang, Pei
    Liu, Xinwang
    Guo, Xifeng
    Zhou, Sihang
    Zhu, En
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 2567 - 2579
  • [48] A hierarchical fuzzy cluster ensemble approach and its application to big data clustering
    Su, Pan
    Shang, Changjing
    Shen, Qiang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 28 (06) : 2409 - 2421
  • [49] Transfer Clustering Ensemble Selection
    Shi, Yifan
    Yu, Zhiwen
    Chen, C. L. Philip
    You, Jane
    Wong, Hau-San
    Wang, Yide
    Zhang, Jun
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (06) : 2872 - 2885
  • [50] Ensemble Clustering With Attentional Representation
    Hao, Zhezheng
    Lu, Zhoumin
    Li, Guoxu
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (02) : 581 - 593