Euler characteristics and their congruences for multisigned Selmer groups

被引:1
作者
Ray, Anwesh [1 ]
Sujatha, R. [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2023年 / 75卷 / 01期
关键词
Euler characteristics in Iwasawa theory; congruences; multisigned selmer groups; Iwasawa invariants; IWASAWA THEORY; ELLIPTIC-CURVES; SUPERSINGULAR PRIMES; ABELIAN-VARIETIES; INVARIANTS; CONJECTURES; VALUES; BIRCH;
D O I
10.4153/S0008414X21000699
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of the truncated Euler characteristic for Iwasawa modules is a generalization of the the usual Euler characteristic to the case when the Selmer groups are not finite. Let p be an odd prime, E-1 and E-2 be elliptic curves over a number field F with semistable reduction at all primes v vertical bar p such that the Gal((F) over bar /F)-modules E-1[p] and E-2[p] are irreducible and isomorphic. We compare the Iwasawa invariants of certain imprimitive multisigned Selmer groups of E-1 and E-2. Leveraging these results, congruence relations for the truncated Euler characteristics associated to these Selmer groups over certain Z(p)(m)-extensions of F are studied. Our results extend earlier congruence relations for elliptic curves over Q with good ordinary reduction at p.
引用
收藏
页码:298 / 321
页数:24
相关论文
共 37 条
[1]  
BERNARDI D, 1993, CR ACAD SCI I-MATH, V317, P227
[2]  
Coates, 2000, LECT NOTES TATA I FU, V88
[3]   Kummer theory for abelian varieties over local fields [J].
Coates, J ;
Greenberg, R .
INVENTIONES MATHEMATICAE, 1996, 124 (1-3) :129-174
[4]  
Coates J.H., 2003, DOC MATH, V2003, P187
[5]   Variation of Iwasawa invariants in Hida families [J].
Emerton, M ;
Pollack, R ;
Weston, T .
INVENTIONES MATHEMATICAE, 2006, 163 (03) :523-580
[6]  
Greenberg, 1989, ALGEBRAIC NUMBER THE
[7]   On the Iwasawa invariants of elliptic curves [J].
Greenberg, R ;
Vatsal, V .
INVENTIONES MATHEMATICAE, 2000, 142 (01) :17-63
[8]  
Greenberg R, 1999, LECT NOTES MATH, V1716, P51
[9]  
Hachimori Y, 1999, J ALGEBRAIC GEOM, V8, P581
[10]   Iwasawa theory of elliptic curves at supersingular primes over Zp-extensions of number fields [J].
Iovita, Adrian ;
Pollack, Robert .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 598 :71-103