Reversible Hydration Enabling High-Rate Aqueous Li-Ion Batteries

被引:8
|
作者
Zhang, Leiting [1 ]
Kuhling, Franziska [1 ]
Mattsson, Agnes-Matilda [1 ]
Knijff, Lisanne [1 ]
Hou, Xu [1 ]
Ek, Gustav [1 ]
Dufils, Thomas [1 ]
Gjorup, Frederik Holm [2 ,3 ]
Kantor, Innokenty [2 ,4 ]
Zhang, Chao [1 ]
Brant, William R. [1 ]
Edstrom, Kristina [1 ]
Berg, Erik J. [1 ]
机构
[1] Uppsala Univ, Dept Chem, Angstrom Lab, SE-75121 Uppsala, Sweden
[2] Lund Univ, MAX Lab 4, SE-22100 Lund, Sweden
[3] Aarhus Univ, Dept Chem, DK-8000 Aarhus, Denmark
[4] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
基金
瑞典研究理事会;
关键词
Electric discharges - Electrolytes - Hydration - Ions - Lithium compounds - Molecules - Sulfur compounds - Titanium compounds;
D O I
10.1021/acsenergylett.4c00224
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Layered TiS2 has been proposed as a versatile host material for various battery chemistries. Nevertheless, its compatibility with aqueous electrolytes has not been thoroughly understood. Herein, we report on a reversible hydration process to account for the electrochemical activity and structural evolution of TiS2 in a relatively dilute electrolyte for sustainable aqueous Li-ion batteries. Solvated water molecules intercalate in TiS2 layers together with Li+ cations, forming a hydrated phase with a nominal formula unit of Li-0.38(H2O)(2-delta)TiS2 as the end-product. We unambiguously confirm the presence of two layers of intercalated water by complementary electrochemical cycling, operando structural characterization, and computational simulation. Such a process is fast and reversible, delivering 60 mAh g(-1) discharge capacity at a current density of 1250 mA g(-1). Our work provides further design principles for high-rate aqueous Li-ion batteries based on reversible water cointercalation.
引用
收藏
页码:959 / 966
页数:8
相关论文
共 50 条
  • [1] Graphene foam as an anode for high-rate Li-ion batteries
    Zhou, Xufeng
    Liu, Zhaoping
    3RD INTERNATIONAL CONGRESS ON CERAMICS (ICC): NANO-CRYSTALS AND ADVANCED POWDER TECHNOLOGY, 2011, 18
  • [2] Carbon nanotube array anodes for high-rate Li-ion batteries
    Zhang, Hao
    Cao, Gaoping
    Wang, Zhiyong
    Yang, Yusheng
    Shi, Zujin
    Gu, Zhennan
    ELECTROCHIMICA ACTA, 2010, 55 (08) : 2873 - 2877
  • [3] Facile synthesis of hollow TiNbOmicrospheres for high-rate anode of Li-ion batteries
    YongGang Sun
    TianQi Sun
    XiJie Lin
    XianSen Tao
    Dong Zhang
    Chen Zeng
    AnMin Cao
    LiJun Wan
    Science China(Chemistry), 2018, (06) : 670 - 676
  • [4] Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries
    Billaud J.
    Bouville F.
    Magrini T.
    Villevieille C.
    Studart A.R.
    Nature Energy, 1 (8)
  • [5] Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries
    Billaud, Juliette
    Bouville, Florian
    Magrini, Tommaso
    Villevieille, Claire
    Studart, Andre R.
    NATURE ENERGY, 2016, 1
  • [6] Nanostructured 3D Electrode Architectures for High-Rate Li-Ion Batteries
    Haag, Jacob M.
    Pattanaik, Gyanaranjan
    Durstock, Michael F.
    ADVANCED MATERIALS, 2013, 25 (23) : 3238 - 3243
  • [7] Nanocarbon Florets with Synthetically Tunable Porosity as High-Rate Anodes for Li-ion Batteries
    Gupta, Soumyajit
    Thacharakkal, Dipin
    Subramaniam, Chandramouli
    Ramakrishnan, Srinivasan
    ACS APPLIED NANO MATERIALS, 2024, 7 (23) : 27336 - 27343
  • [8] Spinel/Layered Heterostructured Cathode Material for High-Capacity and High-Rate Li-Ion Batteries
    Wu, Feng
    Li, Ning
    Su, Yuefeng
    Shou, Haofang
    Bao, Liying
    Yang, Wen
    Zhang, Linjing
    An, Ran
    Chen, Shi
    ADVANCED MATERIALS, 2013, 25 (27) : 3722 - 3726
  • [10] High-Rate Capability Silicon Decorated Vertically Aligned Carbon Nanotubes for Li-Ion Batteries
    Gohier, Aurelien
    Laik, Barbara
    Kim, Ki-Hwan
    Maurice, Jean-Luc
    Pereira-Ramos, Jean-Pierre
    Cojocaru, Costel Sorin
    Pierre Tran Van
    ADVANCED MATERIALS, 2012, 24 (19) : 2592 - 2597