Hydrodynamic Groundwater Modeling and Hydrochemical Conceptualization of the Closure Mining Area of the WuMa River Watershed of China

被引:3
|
作者
Yang, Lei [1 ]
Liu, Lang [2 ,3 ]
Liu, Yuan [4 ]
Chen, Guangping [5 ]
Liang, Liying [2 ,3 ,6 ]
机构
[1] China Univ Min & Technol, Sch Geosci & Surveying Engn, Beijing 100083, Peoples R China
[2] Guangxi Minzu Univ, Sch Mat & Environm, Nanning 530000, Peoples R China
[3] Guangxi Minzu Univ, Sch Mat & Environm, Guangxi Coll & Univ Key Lab Environm Friendly Mat, Guangxi Key Lab Adv Struct Mat & Carbon Neutraliza, Nanning 530105, Peoples R China
[4] Guizhou Environm & Engn Appraisal Ctr, Guiyang 550002, Guizhou, Peoples R China
[5] Guizhou ZhongGui Environm Technol Co Ltd, Guiyang 550008, Peoples R China
[6] Guangxi Chem Res Inst Ltd Co, Nanning 530000, Peoples R China
来源
ACS OMEGA | 2023年 / 9卷 / 01期
关键词
COAL-MINE; CONTAMINATION; SYSTEM; MANGANESE; REGIONS; QUALITY; BASIN;
D O I
10.1021/acsomega.3c05631
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The WuMa River (WMR) watershed is located in Renhuai City, Guizhou Province of China, which is a first-class tributary of the Chishui River. The geochemical investigation mainly included the determination of groundwater pH, total hardness, total dissolution solid, major cationic and anionic, and the geochemical groundwater modeling. The principal component analysis (PCA) and Gibbs model were used to analyze the pollution type and geochemical composition. The geochemical investigation results show that the cations of groundwater are dominated by Ca2+ and the anions are dominated by HCO3-; therefore, two main hydrochemical types in the study area are identified as Ca2+-Mg2+-HCO3- and Ca2+-Mg2+-SO42-. The chemical composition of groundwater in this area is mainly controlled by weathering of the carbonate rocks. The ion concentration of groundwater in the study area exhibited significant spatial variability between dry and wet seasons, while temporal changes of cationic and anionic concentrations exhibited irregularities. In PCA and FA analysis, PC1, PC2, and PC3 were extracted, which could explain 51.92, 26.98, and 12.61% of the total information, respectively. F1 explained 67.44% of the total variance, among which Ca2+, Mg2+, K+, SO42-, and Cl- contributed the most among the factors and were the main factors controlling the chemical composition of groundwater. The relative error between the measured water level and the simulated water level is less than 2%, which meets the requirements of simulation accuracy. During the simulation period of the model, a total recharge of 339.05 x 10(4) m(3) was observed in the simulated area, primarily attributed to infiltration from rainfall. The total excretion amounted to 330.78 x 10(4) m(3), primarily through evaporation, with a minor amount of lateral outflow. The migration pathway of pollutants in groundwater primarily follows the direction of groundwater flow while diffusing vertically. The migration range of the pollutant is in accordance with the direction of groundwater flow and extends along the larger hydraulic gradient, demonstrating consistency. The findings of this study serve as a reminder that the closure of coal mines can constitute a significant source of water pollution. Simultaneously, they offer empirical data and theoretical references for the simulation and prediction of groundwater contamination in enclosed coal mines.
引用
收藏
页码:520 / 537
页数:18
相关论文
共 50 条
  • [41] Hydrochemical characterization of drinking groundwater with special reference to fluoride in an arid area of China and the control of aquifer leakage on its concentrations
    Wu, Jianhua
    Li, Peiyue
    Qian, Hui
    ENVIRONMENTAL EARTH SCIENCES, 2015, 73 (12) : 8575 - 8588
  • [42] Hydrochemical appraisal of groundwater quality and pollution source analysis of oil field area: a case study in Daqing City, China
    Zhang, Han
    Bian, Jianmin
    Wan, Hanli
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (15) : 18667 - 18685
  • [43] Modeling the impact of potentially harmful elements on the groundwater quality of a mining area (Nigeria) by integrating NSFWQI, HERisk code, and HCs
    Egbueri, Johnbosco C.
    Enyigwe, Monday T.
    Ayejoto, Daniel A.
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2022, 194 (03)
  • [44] Hydrochemical Characteristics and Water Quality of Shallow Groundwater in Desert Area of Kunyu City, Southern Margin of Tarim Basin, China
    Tang, Runchi
    Dong, Shuning
    Zhang, Mengfei
    Zhou, Zhenfang
    Zhang, Chenghang
    Li, Pei
    Bai, Mengtong
    WATER, 2023, 15 (08)
  • [45] Groundwater characterization including prediction of the quality, fluoride, and nitrate occurrence in a typical artisanal mining area in Ghana: A hydrochemical and multivariate statistical approach
    Abu, Mahamuda
    Zango, Musah Saeed
    Nunoo, Samuel
    Anim-Gyampo, Maxwell
    GROUNDWATER FOR SUSTAINABLE DEVELOPMENT, 2023, 23
  • [46] A Modified Groundwater Module in SWAT for Improved Streamflow Simulation in a Large, Arid Endorheic River Watershed in Northwest China
    Jin, Xin
    He, Chansheng
    Zhang, Lanhui
    Zhang, Baoqing
    CHINESE GEOGRAPHICAL SCIENCE, 2018, 28 (01) : 47 - 60
  • [47] Optimization of Groundwater Exploitation in an Irrigation Area in the Arid Upper Peacock River, NW China: Implications for Sustainable Agriculture and Ecology
    Su, Yujuan
    Yang, Fengtian
    Chen, Yaoxuan
    Zhang, Pan
    Zhang, Xue
    SUSTAINABILITY, 2021, 13 (16)
  • [48] Groundwater Hydrogeochemical Processes and Potential Threats to Human Health in Fengfeng Coal Mining Area, China
    Zhang, Zhiqiang
    Li, Haixue
    Zhang, Fawang
    Qian, Jiazhong
    Han, Shuangbao
    Dai, Fenggang
    WATER, 2023, 15 (22)
  • [49] Hydro-geochemical processes of the deep Ordovician groundwater in a coal mining area, Xuzhou, China
    Liu, Pu
    Yang, Miao
    Sun, Yajun
    HYDROGEOLOGY JOURNAL, 2019, 27 (06) : 2231 - 2244
  • [50] Influence of coal mining on regional karst groundwater system: a case study in West Mountain area of Taiyuan City, northern China
    Qiao, Xiaojuan
    Li, Guomin
    Li, Ming
    Zhou, Jinlong
    Du, Jie
    Du, Chengyuan
    Sun, Zhonghui
    ENVIRONMENTAL EARTH SCIENCES, 2011, 64 (06) : 1525 - 1535