Hydrodynamic Groundwater Modeling and Hydrochemical Conceptualization of the Closure Mining Area of the WuMa River Watershed of China

被引:3
|
作者
Yang, Lei [1 ]
Liu, Lang [2 ,3 ]
Liu, Yuan [4 ]
Chen, Guangping [5 ]
Liang, Liying [2 ,3 ,6 ]
机构
[1] China Univ Min & Technol, Sch Geosci & Surveying Engn, Beijing 100083, Peoples R China
[2] Guangxi Minzu Univ, Sch Mat & Environm, Nanning 530000, Peoples R China
[3] Guangxi Minzu Univ, Sch Mat & Environm, Guangxi Coll & Univ Key Lab Environm Friendly Mat, Guangxi Key Lab Adv Struct Mat & Carbon Neutraliza, Nanning 530105, Peoples R China
[4] Guizhou Environm & Engn Appraisal Ctr, Guiyang 550002, Guizhou, Peoples R China
[5] Guizhou ZhongGui Environm Technol Co Ltd, Guiyang 550008, Peoples R China
[6] Guangxi Chem Res Inst Ltd Co, Nanning 530000, Peoples R China
来源
ACS OMEGA | 2023年 / 9卷 / 01期
关键词
COAL-MINE; CONTAMINATION; SYSTEM; MANGANESE; REGIONS; QUALITY; BASIN;
D O I
10.1021/acsomega.3c05631
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The WuMa River (WMR) watershed is located in Renhuai City, Guizhou Province of China, which is a first-class tributary of the Chishui River. The geochemical investigation mainly included the determination of groundwater pH, total hardness, total dissolution solid, major cationic and anionic, and the geochemical groundwater modeling. The principal component analysis (PCA) and Gibbs model were used to analyze the pollution type and geochemical composition. The geochemical investigation results show that the cations of groundwater are dominated by Ca2+ and the anions are dominated by HCO3-; therefore, two main hydrochemical types in the study area are identified as Ca2+-Mg2+-HCO3- and Ca2+-Mg2+-SO42-. The chemical composition of groundwater in this area is mainly controlled by weathering of the carbonate rocks. The ion concentration of groundwater in the study area exhibited significant spatial variability between dry and wet seasons, while temporal changes of cationic and anionic concentrations exhibited irregularities. In PCA and FA analysis, PC1, PC2, and PC3 were extracted, which could explain 51.92, 26.98, and 12.61% of the total information, respectively. F1 explained 67.44% of the total variance, among which Ca2+, Mg2+, K+, SO42-, and Cl- contributed the most among the factors and were the main factors controlling the chemical composition of groundwater. The relative error between the measured water level and the simulated water level is less than 2%, which meets the requirements of simulation accuracy. During the simulation period of the model, a total recharge of 339.05 x 10(4) m(3) was observed in the simulated area, primarily attributed to infiltration from rainfall. The total excretion amounted to 330.78 x 10(4) m(3), primarily through evaporation, with a minor amount of lateral outflow. The migration pathway of pollutants in groundwater primarily follows the direction of groundwater flow while diffusing vertically. The migration range of the pollutant is in accordance with the direction of groundwater flow and extends along the larger hydraulic gradient, demonstrating consistency. The findings of this study serve as a reminder that the closure of coal mines can constitute a significant source of water pollution. Simultaneously, they offer empirical data and theoretical references for the simulation and prediction of groundwater contamination in enclosed coal mines.
引用
收藏
页码:520 / 537
页数:18
相关论文
共 50 条
  • [21] Saline groundwater evolution in the Luanhe River delta (China) during the Holocene: hydrochemical, isotopic, and sedimentary evidence
    Dang, Xianzhang
    Gao, Maosheng
    Wen, Zhang
    Hou, Guohua
    Jakada, Hamza
    Ayejoto, Daniel
    Sun, Qiming
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2022, 26 (05) : 1341 - 1356
  • [22] Hydrochemical and isotopic fingerprints of groundwater origin and evolution in the Urangulan River basin, China's Loess Plateau
    Qu, Shen
    Duan, Limin
    Mao, Hairu
    Wang, Chenyu
    Liang, Xiangyang
    Luo, Ankun
    Huang, Lei
    Yu, Ruihong
    Miao, Ping
    Zhao, Yuanzhen
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 866
  • [23] Hydrochemical characteristic and interaction process of surface and groundwater in mid-lower reach of Hanjiang River, China
    Li, Xing
    Tang, Changyuan
    Han, Zhiwei
    Cao, Yingjie
    ENVIRONMENTAL EARTH SCIENCES, 2016, 75 (05) : 1 - 12
  • [24] Surface water and groundwater contaminations and the resultant hydrochemical evolution in the Yongxiu area, west of Poyang Lake, China
    Xu, Beiyi
    Wang, Guangcai
    ENVIRONMENTAL EARTH SCIENCES, 2016, 75 (03) : 1 - 16
  • [25] Surface water and groundwater contaminations and the resultant hydrochemical evolution in the Yongxiu area, west of Poyang Lake, China
    Beiyi Xu
    Guangcai Wang
    Environmental Earth Sciences, 2016, 75
  • [26] Ecology-oriented groundwater resource assessment in the Tuwei River watershed, Shaanxi Province, China
    Yang, Z. Y.
    Wang, W. K.
    Wang, Z.
    Jiang, G. H.
    Li, W. L.
    HYDROGEOLOGY JOURNAL, 2016, 24 (08) : 1939 - 1952
  • [27] A multiple isotope (H, O, N, C and S) approach to elucidate the hydrochemical evolution of shallow groundwater in a rapidly urbanized area of the Pearl River Delta, China
    Li, Xue
    Tang, Changyuan
    Cao, Yingjie
    Li, Dan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 724
  • [28] Possible Hydrochemical Processes Influencing Dissolved Solids in Surface Water and Groundwater of the Kaidu River Basin, Northwest China
    Li, Dalong
    Chen, Haiyan
    Jia, Shaofeng
    Lv, Aifeng
    WATER, 2020, 12 (02)
  • [29] Natural background levels of chemical components in groundwater of Hutuo River catchment area, North China Plain
    Zhang, Ying
    Chen, Zongyu
    Sun, Jichao
    Wang, Jincui
    ENVIRONMENTAL FORENSICS, 2017, 18 (01) : 62 - 73
  • [30] Causes of groundwater salinization in the plain area of Kashgar River Basin in Xinjiang, China
    Zeng, Yanyan
    Zhou, Jinlong
    Zhou, Yinzhu
    Sun, Ying
    Zhang, Jie
    ENVIRONMENTAL EARTH SCIENCES, 2021, 80 (24)