Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning

被引:88
作者
Javidan, Seyed Mohamad [1 ]
Banakar, Ahmad [1 ]
Vakilian, Keyvan Asefpour [2 ]
Ampatzidis, Yiannis [3 ]
机构
[1] Tarbiat Modares Univ, Dept Biosyst Engn, Tehran, Iran
[2] Gorgan Univ Agr Sci & Nat Resources, Dept Biosyst Engn, Gorgan, Iran
[3] Univ Florida, Southwest Florida Res & Educ Ctr, Agr & Biol Engn Dept, 2685 FL-29, Immokalee, FL 34142 USA
来源
SMART AGRICULTURAL TECHNOLOGY | 2023年 / 3卷
关键词
Artificial intelligence; Deep learning; Disease classification; Grape diseases; Machine vision; FEATURE-SELECTION METHODS; MANAGEMENT; CLASSIFICATION; TECHNOLOGY; ROBOT;
D O I
10.1016/j.atech.2022.100081
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Plant diseases often reduce crop yield and product quality; therefore, plant disease diagnosis plays a vital role in farmers' management decisions. Visual crop inspections by humans are time-consuming and challenging tasks and, practically, can only be performed in small areas at a given time, especially since many diseases have similar symptoms. An intelligent machine vision monitoring system for automatic inspection can be a great help for farmers in this regard. Although many algorithms have been introduced for plant disease diagnosis in recent years, a simple method relying on minimal information from the images is of interest for field conditions. In this study, a novel image processing algorithm and multi-class support vector machine (SVM) were used to diagnose and classify grape leaf diseases, i.e., black measles, black rot, and leaf blight. The area of disease symptoms was separated from the healthy parts of the leaf utilizing K-means clustering automatically, and then the features were extracted in three color models, namely RGB, HSV, and l*a*b. As an efficient classification method, SVM was used in this study, where principal component analysis (PCA) was performed for feature dimension reduction. Finally, the most important features were selected by the relief feature selection. Gray-level cooccurrence matrix (GLCM) features resulted in an accuracy of 98.71%, while feature dimension reduction using PCA resulted in an accuracy of 98.97%. The proposed method was compared with two deep learning methods, i. e., CNN and GoogleNet, which achieved classification accuracies of 86.82% and 94.05%, respectively, while the processing time for the proposed method was significantly shorter than those of these models.
引用
收藏
页数:14
相关论文
共 63 条
[1]   Laboratory and UAV-Based Identification and Classification of Tomato Yellow Leaf Curl, Bacterial Spot, and Target Spot Diseases in Tomato Utilizing Hyperspectral Imaging and Machine Learning [J].
Abdulridha, Jaafar ;
Ampatzidis, Yiannis ;
Qureshi, Jawwad ;
Roberts, Pamela .
REMOTE SENSING, 2020, 12 (17)
[2]   Detecting powdery mildew disease in squash at different stages using UAV-based hyperspectral imaging and artificial intelligence [J].
Abdulridha, Jaafar ;
Ampatzidis, Yiannis ;
Roberts, Pamela ;
Kakarla, Sri Charan .
BIOSYSTEMS ENGINEERING, 2020, 197 :135-148
[3]   Detection of target spot and bacterial spot diseases in tomato using UAV-based and benchtop-based hyperspectral imaging techniques [J].
Abdulridha, Jaafar ;
Ampatzidis, Yiannis ;
Kakarla, Sri Charan ;
Roberts, Pamela .
PRECISION AGRICULTURE, 2020, 21 (05) :955-978
[4]  
Al Bashish D., 2010, P 2010 INT C SIGN IM
[5]  
Al-Hiary H., 2011, International Journal of Computer Applications, V17, P31, DOI [10.5120/2183-2754, DOI 10.5120/2183-2754]
[6]   Comparative Study of Statistical, Numerical and Machine Learning-Based Pedotransfer Functions of Water Retention Curve with Particle Size Distribution Data [J].
Amanabadi, S. ;
Vazirinia, M. ;
Vereecken, H. ;
Vakilian, K. Asefpour ;
Mohammadi, M. H. .
EURASIAN SOIL SCIENCE, 2019, 52 (12) :1555-1571
[7]  
Archana A., 2019, SSRN Electron. J.
[8]   A review on the main challenges in automatic plant disease identification based on visible range images [J].
Arnal Barbedo, Jayme Garcia .
BIOSYSTEMS ENGINEERING, 2016, 144 :52-60
[9]   Factors influencing the use of deep learning for plant disease recognition [J].
Barbedo, Jayme G. A. .
BIOSYSTEMS ENGINEERING, 2018, 172 :84-91
[10]   Smart Farming: Pomegranate Disease Detection Using Image Processing [J].
Bhange, Manisha ;
Hingoliwala, H. A. .
SECOND INTERNATIONAL SYMPOSIUM ON COMPUTER VISION AND THE INTERNET (VISIONNET'15), 2015, 58 :280-288