On Fixed-Point Equations Involving Geraghty-Type Contractions with Solution to Integral Equation

被引:8
|
作者
Singh, Moirangthem Pradeep [1 ]
Rohen, Yumnam [1 ,2 ]
Saleem, Naeem [3 ,4 ]
Alam, Khairul Habib [1 ]
Singh, Kumam Anthony [2 ]
Razzaque, Asima [5 ]
机构
[1] Natl Inst Technol Manipur, Dept Math, Imphal 795004, India
[2] Manipur Univ, Dept Math, Imphal 795003, India
[3] Univ Management & Technol, Dept Math, Lahore 54770, Pakistan
[4] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Medunsa, Pretoria, South Africa
[5] King Faisal Univ Al Ahsa, Dept Basic Sci, Deanship Preparatory Year, Al Hufuf 31982, Saudi Arabia
关键词
S-b-metric space; fixed point; Geraghty-type contraction;
D O I
10.3390/math11244882
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, the authors verify fixed-point results for Geraghty contractions with a restricted co-domain of the auxiliary function in the context of generalized metric structure, namely the S-b-metric space. This new idea of defining Geraghty contraction for self-operators generalizes a large number of previously published, closely related works on the presence and uniqueness of a fixed point in S-b-metric space. Also, the outcomes are achieved by removing the continuity constraint of self-operators. We also provide examples to elaborate on the obtained results and an application to the integral equation to illustrate the significance in the literature.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Existence and uniqueness of best proximity point for contractions of Geraghty type
    A. Almeida
    J. Harjani
    K. Sadarangani
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2014, 108 : 957 - 971
  • [22] Existence and uniqueness of best proximity point for contractions of Geraghty type
    Almeida, A.
    Harjani, J.
    Sadarangani, K.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2014, 108 (02) : 957 - 971
  • [23] On the application of some fixed-point techniques to Fredholm integral equations of the second kind
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2024, 26 (03)
  • [24] Fixed Points for α - βE -Geraghty Contractions on b-Metric Spaces and Applications to Matrix Equations
    Aydi, Hassen
    Felhi, Abdelbasset
    Karapinar, Erdal
    AlRubaish, Hind
    AlShammari, Maha
    FILOMAT, 2019, 33 (12) : 3737 - 3750
  • [25] Infinite Geraghty type extensions and their applications on integral equations
    R. Bardhan
    C. Ozel
    L. Guran
    H. Aydi
    Choonkil Park
    Advances in Difference Equations, 2021
  • [26] Infinite Geraghty type extensions and their applications on integral equations
    Bardhan, R.
    Ozel, C.
    Guran, L.
    Aydi, H.
    Park, Choonkil
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [27] Solution of fractional integral equations via fixed point results
    Mi Zhou
    Naeem Saleem
    Shahid Bashir
    Journal of Inequalities and Applications, 2022
  • [28] Computation of solution of integral equations via fixed point results
    Alqudah, Manar A.
    Garodia, Chanchal
    Uddin, Izhar
    Nieto, Juan J.
    DEMONSTRATIO MATHEMATICA, 2022, 55 (01) : 772 - 785
  • [29] Existence of a solution of integral equations via fixed point theorem
    Gulyaz, Selma
    Karapinar, Erdal
    Rakocevic, Vladimir
    Salimi, Peyman
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [30] Existence of a solution of integral equations via fixed point theorem
    Selma Gülyaz
    Erdal Karapınar
    Vladimir Rakocević
    Peyman Salimi
    Journal of Inequalities and Applications, 2013