Source-Data-Free Cross-Domain Knowledge Transfer for Semantic Segmentation

被引:0
|
作者
Li, Zongyao [1 ]
Togo, Ren [2 ]
Ogawa, Takahiro [2 ]
Haseyama, Miki [2 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
[2] Hokkaido Univ, Fac Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
来源
IEEE OPEN JOURNAL OF SIGNAL PROCESSING | 2024年 / 5卷
关键词
Training; Adaptation models; Semantic segmentation; Data models; Semantics; Uncertainty; Signal processing; Domain adaptation; semantic segmentation; source-data-free domain adaptation; style transfer;
D O I
10.1109/OJSP.2023.3340616
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes a method for transferring knowledge of semantic segmentation from a labeled source domain to an unlabeled target domain without using the source-domain data. Such a problem is called source-data-free domain adaptation, in which a pre-trained source-domain model and the unlabeled target-domain data are used to transfer the label knowledge across the domains. Like most previous methods, our method uses pseudo labels for distilling and transferring the source-domain knowledge. On the basis of the pseudo-label learning, our method improves the domain adaptation performance in two innovative ways: 1) reducing the domain differences by source-data-free style transfer and 2) exploring the style diversity within the target domain by style modification. To this end, we introduce two additional modules: 1) an inter-domain style transfer module which aligns the feature statistics of the source and target domains before producing the pseudo labels thereby improving the pseudo labels' accuracy, and 2) an intra-domain style modification module which modifies the image styles within the target domain for learning intra-domain style-invariant features. Our method with the two modules outperforms previous source-data-free domain adaptation methods in two commonly used benchmarks. Moreover, our method is well compatible with the previous methods for further improvement.
引用
收藏
页码:92 / 100
页数:9
相关论文
共 50 条
  • [41] Knowledge-inspired Subdomain Adaptation for Cross-Domain Knowledge Transfer
    Chen, Liyue
    Wang, Linian
    Xu, Jinyu
    Chen, Shuai
    Wang, Weiqiang
    Zhao, Wenbiao
    Li, Qiyu
    Wang, Leye
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 234 - 244
  • [42] Mutual-Prototype Adaptation for Cross-Domain Polyp Segmentation
    Yang, Chen
    Guo, Xiaoqing
    Zhu, Meilu
    Ibragimov, Bulat
    Yuan, Yixuan
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (10) : 3886 - 3897
  • [43] Uncertainty Estimation Pseudo-Label-Guided Source-Free Domain Adaptation for Cross-Domain Remaining Useful Life Prediction in IIoT
    Chen, Zhuohang
    Chen, Jinglong
    Pan, Tongyang
    Xie, Jingsong
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (01): : 236 - 249
  • [44] ResiDualGAN: Resize-Residual DualGAN for Cross-Domain Remote Sensing Images Semantic Segmentation
    Zhao, Yang
    Guo, Peng
    Sun, Zihao
    Chen, Xiuwan
    Gao, Han
    REMOTE SENSING, 2023, 15 (05)
  • [45] Joint alignment of the distribution in input and feature space for cross-domain aerial image semantic segmentation
    Chen, Zhe
    Yang, Bisheng
    Ma, Ailong
    Peng, Mingjun
    Li, Haiting
    Chen, Tao
    Chen, Chi
    Dong, Zhen
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 115
  • [46] Feature Re-Representation and Reliable Pseudo Label Retraining for Cross-Domain Semantic Segmentation
    Li, Jing
    Zhou, Kang
    Qian, Shenhan
    Li, Wen
    Duan, Lixin
    Gao, Shenghua
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (03) : 1682 - 1694
  • [47] Cross-Domain Transfer Hashing for Efficient Cross-Modal Retrieval
    Li, Fengling
    Wang, Bowen
    Zhu, Lei
    Li, Jingjing
    Zhang, Zheng
    Chang, Xiaojun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (10) : 9664 - 9677
  • [48] Uncertainty-Aware Source-Free Domain Adaptive Semantic Segmentation
    Lu, Zhihe
    Li, Da
    Song, Yi-Zhe
    Xiang, Tao
    Hospedales, Timothy M. M.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4664 - 4676
  • [49] SAFENet: Semantic-Aware Feature Enhancement Network for unsupervised cross-domain road scene segmentation
    Ren, Dexin
    Li, Minxian
    Wang, Shidong
    Ren, Mingwu
    Zhang, Haofeng
    IMAGE AND VISION COMPUTING, 2024, 152
  • [50] Unleashing Knowledge Potential of Source Hypothesis for Source-Free Domain Adaptation
    Hu, Bingyu
    Liu, Jiawei
    Zheng, Kecheng
    Zha, Zheng-Jun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 5422 - 5434