Source-Data-Free Cross-Domain Knowledge Transfer for Semantic Segmentation

被引:0
|
作者
Li, Zongyao [1 ]
Togo, Ren [2 ]
Ogawa, Takahiro [2 ]
Haseyama, Miki [2 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
[2] Hokkaido Univ, Fac Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
来源
IEEE OPEN JOURNAL OF SIGNAL PROCESSING | 2024年 / 5卷
关键词
Training; Adaptation models; Semantic segmentation; Data models; Semantics; Uncertainty; Signal processing; Domain adaptation; semantic segmentation; source-data-free domain adaptation; style transfer;
D O I
10.1109/OJSP.2023.3340616
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes a method for transferring knowledge of semantic segmentation from a labeled source domain to an unlabeled target domain without using the source-domain data. Such a problem is called source-data-free domain adaptation, in which a pre-trained source-domain model and the unlabeled target-domain data are used to transfer the label knowledge across the domains. Like most previous methods, our method uses pseudo labels for distilling and transferring the source-domain knowledge. On the basis of the pseudo-label learning, our method improves the domain adaptation performance in two innovative ways: 1) reducing the domain differences by source-data-free style transfer and 2) exploring the style diversity within the target domain by style modification. To this end, we introduce two additional modules: 1) an inter-domain style transfer module which aligns the feature statistics of the source and target domains before producing the pseudo labels thereby improving the pseudo labels' accuracy, and 2) an intra-domain style modification module which modifies the image styles within the target domain for learning intra-domain style-invariant features. Our method with the two modules outperforms previous source-data-free domain adaptation methods in two commonly used benchmarks. Moreover, our method is well compatible with the previous methods for further improvement.
引用
收藏
页码:92 / 100
页数:9
相关论文
共 50 条
  • [31] Domain-Oriented Knowledge Transfer for Cross-Domain Recommendation
    Zhao, Guoshuai
    Zhang, Xiaolong
    Tang, Hao
    Shen, Jialie
    Qian, Xueming
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9539 - 9550
  • [32] FREE LUNCH FOR CROSS-DOMAIN OCCLUDED FACE RECOGNITION WITHOUT SOURCE DATA
    Zhang, Taoshan
    Xiang, Youjun
    Li, Xianfeng
    Weng, Zichun
    Chen, Zhen
    Fu, Yuli
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2944 - 2948
  • [33] CMT: Cross Mean Teacher Unsupervised Domain Adaptation for VHR Image Semantic Segmentation
    Yan, Liang
    Fan, Bin
    Xiang, Shiming
    Pan, Chunhong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [34] Unsupervised domain adaptation segmentation algorithm with cross-domain data augmentation and category contrast
    Dong, Wenyong
    Liang, Zhixue
    Wang, Liping
    Tian, Gang
    Long, Qianhui
    NEUROCOMPUTING, 2025, 623
  • [35] SEMANTIC GAN: APPLICATION FOR CROSS-DOMAIN IMAGE STYLE TRANSFER
    Li, Pengfei
    Yang, Meng
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 910 - 915
  • [36] Graph Adaptive Semantic Transfer for Cross-domain Sentiment Classification
    Zhang, Kai
    Liu, Qi
    Huang, Zhenya
    Cheng, Mingyue
    Zhang, Kun
    Zhang, Mengdi
    Wu, Wei
    Chen, Enhong
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 1566 - 1576
  • [37] Source-Free Progressive Domain Adaptation Network for Universal Cross-Domain Fault Diagnosis of Industrial Equipment
    Li, Jipu
    Yue, Ke
    Wu, Zhaoqian
    Jiang, Fei
    Zhong, Zhi
    Li, Weihua
    Zhang, Shaohui
    IEEE SENSORS JOURNAL, 2025, 25 (05) : 8067 - 8078
  • [38] Weakly-Supervised Domain Adaptation With Adversarial Entropy for Building Segmentation in Cross-Domain Aerial Imagery
    Yao, Xuedong
    Wang, Yandong
    Wu, Yanlan
    Liang, Zeyu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 8407 - 8418
  • [39] Latent domain knowledge distillation for nighttime semantic segmentation
    Liu, Yunan
    Wang, Simiao
    Wang, Chunpeng
    Lu, Mingyu
    Sang, Yu
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 132
  • [40] An iterative transfer learning framework for cross-domain tongue segmentation
    Li, Lei
    Luo, Zhiming
    Zhang, Mengting
    Cai, Yuanzheng
    Li, Candong
    Li, Shaozi
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (14)