Source-Data-Free Cross-Domain Knowledge Transfer for Semantic Segmentation

被引:0
|
作者
Li, Zongyao [1 ]
Togo, Ren [2 ]
Ogawa, Takahiro [2 ]
Haseyama, Miki [2 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
[2] Hokkaido Univ, Fac Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
来源
IEEE OPEN JOURNAL OF SIGNAL PROCESSING | 2024年 / 5卷
关键词
Training; Adaptation models; Semantic segmentation; Data models; Semantics; Uncertainty; Signal processing; Domain adaptation; semantic segmentation; source-data-free domain adaptation; style transfer;
D O I
10.1109/OJSP.2023.3340616
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes a method for transferring knowledge of semantic segmentation from a labeled source domain to an unlabeled target domain without using the source-domain data. Such a problem is called source-data-free domain adaptation, in which a pre-trained source-domain model and the unlabeled target-domain data are used to transfer the label knowledge across the domains. Like most previous methods, our method uses pseudo labels for distilling and transferring the source-domain knowledge. On the basis of the pseudo-label learning, our method improves the domain adaptation performance in two innovative ways: 1) reducing the domain differences by source-data-free style transfer and 2) exploring the style diversity within the target domain by style modification. To this end, we introduce two additional modules: 1) an inter-domain style transfer module which aligns the feature statistics of the source and target domains before producing the pseudo labels thereby improving the pseudo labels' accuracy, and 2) an intra-domain style modification module which modifies the image styles within the target domain for learning intra-domain style-invariant features. Our method with the two modules outperforms previous source-data-free domain adaptation methods in two commonly used benchmarks. Moreover, our method is well compatible with the previous methods for further improvement.
引用
收藏
页码:92 / 100
页数:9
相关论文
共 50 条
  • [21] Depth-Assisted ResiDualGAN for Cross-Domain Aerial Images Semantic Segmentation
    Yang, Zhao
    Guo, Peng
    Gao, Han
    Chen, Xiuwan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [22] Depth-Assisted ResiDualGAN for Cross-Domain Aerial Images Semantic Segmentation
    Yang, Zhao
    Guo, Peng
    Gao, Han
    Chen, Xiuwan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [23] Unsupervised domain adaptation alignment method for cross-domain semantic segmentation of remote sensing images
    Shen Z.
    Ni H.
    Guan H.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (12): : 1 - 2
  • [24] Improve Cross-Domain Mixed Sampling With Guidance Training for Adaptive Segmentation
    Zhou, Wenlve
    Zhou, Zhiheng
    Wang, Tianlei
    Zeng, Delu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [25] Semantic-aware short path adversarial training for cross-domain semantic segmentation
    Shan, Yuhu
    Chew, Chee Meng
    Lu, Wen Feng
    NEUROCOMPUTING, 2020, 380 : 125 - 132
  • [26] Confidence-and-Refinement Adaptation Model for Cross-Domain Semantic Segmentation
    Zhang, Xiaohong
    Chen, Yi
    Shen, Ziyi
    Shen, Yuming
    Zhang, Haofeng
    Zhang, Yudong
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 9529 - 9542
  • [27] A Cross-Domain Coupling Network for Semantic Segmentation of Remote Sensing Images
    Li, Xin
    Xu, Feng
    Tao, Feifei
    Tong, Yao
    Gao, Hongmin
    Liu, Fan
    Chen, Ziqi
    Lyu, Xin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [28] CAFA: Cross-Modal Attentive Feature Alignment for Cross-Domain Urban Scene Segmentation
    Liu, Peng
    Ge, Yanqi
    Duan, Lixin
    Li, Wen
    Lv, Fengmao
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (10) : 11666 - 11675
  • [29] Pixel Exclusion: Uncertainty-aware Boundary Discovery for Active Cross-Domain Semantic Segmentation
    You, Fuming
    Li, Jingjing
    Chen, Zhi
    Zhu, Lei
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 1866 - 1874
  • [30] Knowledge based domain adaptation for semantic segmentation
    Zhang, Yuxiao
    Ye, Mao
    Gan, Yan
    Zhang, Wencong
    KNOWLEDGE-BASED SYSTEMS, 2020, 193