Source-Data-Free Cross-Domain Knowledge Transfer for Semantic Segmentation
被引:0
|
作者:
Li, Zongyao
论文数: 0引用数: 0
h-index: 0
机构:
Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, JapanHokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
Li, Zongyao
[1
]
Togo, Ren
论文数: 0引用数: 0
h-index: 0
机构:
Hokkaido Univ, Fac Informat Sci & Technol, Sapporo, Hokkaido 0600814, JapanHokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
Togo, Ren
[2
]
Ogawa, Takahiro
论文数: 0引用数: 0
h-index: 0
机构:
Hokkaido Univ, Fac Informat Sci & Technol, Sapporo, Hokkaido 0600814, JapanHokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
Ogawa, Takahiro
[2
]
Haseyama, Miki
论文数: 0引用数: 0
h-index: 0
机构:
Hokkaido Univ, Fac Informat Sci & Technol, Sapporo, Hokkaido 0600814, JapanHokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
Haseyama, Miki
[2
]
机构:
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
[2] Hokkaido Univ, Fac Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
来源:
IEEE OPEN JOURNAL OF SIGNAL PROCESSING
|
2024年
/
5卷
关键词:
Training;
Adaptation models;
Semantic segmentation;
Data models;
Semantics;
Uncertainty;
Signal processing;
Domain adaptation;
semantic segmentation;
source-data-free domain adaptation;
style transfer;
D O I:
10.1109/OJSP.2023.3340616
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
This article proposes a method for transferring knowledge of semantic segmentation from a labeled source domain to an unlabeled target domain without using the source-domain data. Such a problem is called source-data-free domain adaptation, in which a pre-trained source-domain model and the unlabeled target-domain data are used to transfer the label knowledge across the domains. Like most previous methods, our method uses pseudo labels for distilling and transferring the source-domain knowledge. On the basis of the pseudo-label learning, our method improves the domain adaptation performance in two innovative ways: 1) reducing the domain differences by source-data-free style transfer and 2) exploring the style diversity within the target domain by style modification. To this end, we introduce two additional modules: 1) an inter-domain style transfer module which aligns the feature statistics of the source and target domains before producing the pseudo labels thereby improving the pseudo labels' accuracy, and 2) an intra-domain style modification module which modifies the image styles within the target domain for learning intra-domain style-invariant features. Our method with the two modules outperforms previous source-data-free domain adaptation methods in two commonly used benchmarks. Moreover, our method is well compatible with the previous methods for further improvement.