Source-Data-Free Cross-Domain Knowledge Transfer for Semantic Segmentation

被引:0
|
作者
Li, Zongyao [1 ]
Togo, Ren [2 ]
Ogawa, Takahiro [2 ]
Haseyama, Miki [2 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
[2] Hokkaido Univ, Fac Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
来源
IEEE OPEN JOURNAL OF SIGNAL PROCESSING | 2024年 / 5卷
关键词
Training; Adaptation models; Semantic segmentation; Data models; Semantics; Uncertainty; Signal processing; Domain adaptation; semantic segmentation; source-data-free domain adaptation; style transfer;
D O I
10.1109/OJSP.2023.3340616
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes a method for transferring knowledge of semantic segmentation from a labeled source domain to an unlabeled target domain without using the source-domain data. Such a problem is called source-data-free domain adaptation, in which a pre-trained source-domain model and the unlabeled target-domain data are used to transfer the label knowledge across the domains. Like most previous methods, our method uses pseudo labels for distilling and transferring the source-domain knowledge. On the basis of the pseudo-label learning, our method improves the domain adaptation performance in two innovative ways: 1) reducing the domain differences by source-data-free style transfer and 2) exploring the style diversity within the target domain by style modification. To this end, we introduce two additional modules: 1) an inter-domain style transfer module which aligns the feature statistics of the source and target domains before producing the pseudo labels thereby improving the pseudo labels' accuracy, and 2) an intra-domain style modification module which modifies the image styles within the target domain for learning intra-domain style-invariant features. Our method with the two modules outperforms previous source-data-free domain adaptation methods in two commonly used benchmarks. Moreover, our method is well compatible with the previous methods for further improvement.
引用
收藏
页码:92 / 100
页数:9
相关论文
共 50 条
  • [1] Crots: Cross-Domain Teacher–Student Learning for Source-Free Domain Adaptive Semantic Segmentation
    Xin Luo
    Wei Chen
    Zhengfa Liang
    Longqi Yang
    Siwei Wang
    Chen Li
    International Journal of Computer Vision, 2024, 132 : 20 - 39
  • [2] Crots: Cross-Domain Teacher-Student Learning for Source-Free Domain Adaptive Semantic Segmentation
    Luo, Xin
    Chen, Wei
    Liang, Zhengfa
    Yang, Longqi
    Wang, Siwei
    Li, Chen
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (01) : 20 - 39
  • [3] Source-Free Open Compound Domain Adaptation in Semantic Segmentation
    Zhao, Yuyang
    Zhong, Zhun
    Luo, Zhiming
    Lee, Gim Hee
    Sebe, Nicu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 7019 - 7032
  • [4] Preserving Label-Related Domain-Specific Information for Cross-Domain Semantic Segmentation
    Liao, Muxin
    Tian, Shishun
    Zhang, Yuhang
    Hua, Guoguang
    Zou, Wenbin
    Li, Xia
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (10) : 14917 - 14931
  • [5] TACS: Taxonomy Adaptive Cross-Domain Semantic Segmentation
    Gong, Rui
    Danelljan, Martin
    Dai, Dengxin
    Paudel, Danda Pani
    Chhatkuli, Ajad
    Yu, Fisher
    Van Gool, Luc
    COMPUTER VISION, ECCV 2022, PT XXXIV, 2022, 13694 : 19 - 35
  • [6] Multilevel Self-Training Approach for Cross-Domain Semantic Segmentation in Intelligent Vehicles
    Chen, Yung-Yao
    Jhong, Sin-Ye
    IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2024, 16 (01) : 148 - 161
  • [7] Category-Level Assignment for Cross-Domain Semantic Segmentation in Remote Sensing Images
    Ni, Huan
    Liu, Qingshan
    Guan, Haiyan
    Tang, Hong
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [8] Revisiting Domain-Adaptive Semantic Segmentation via Knowledge Distillation
    Jeong, Seongwon
    Kim, Jiyeong
    Kim, Sungheui
    Min, Dongbo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 6761 - 6773
  • [9] Cross-Domain Transformer with Adaptive Thresholding for Domain Adaptive Semantic Segmentation
    Liu, Quansheng
    Wang, Lei
    Jun, Yu
    Gao, Fang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VIII, 2023, 14261 : 147 - 159
  • [10] Cross-Domain Scene Unsupervised Learning Segmentation With Dynamic Subdomains
    He, Pei
    Jiao, Licheng
    Liu, Fang
    Liu, Xu
    Shang, Ronghua
    Wang, Shuang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 6770 - 6784