Quantum data learning for quantum simulations in high-energy physics

被引:6
作者
Nagano, Lento [1 ]
Miessen, Alexander [2 ,3 ]
Onodera, Tamiya [4 ]
Tavernelli, Ivano [2 ]
Tacchino, Francesco [1 ,2 ]
Terashi, Koji [1 ]
机构
[1] Univ Tokyo, Int Ctr Elementary Particle Phys ICEPP, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1130033, Japan
[2] IBM Res Europe Zurich, IBM Quantum, CH-8803 Ruschlikon, Switzerland
[3] Univ Zurich, Inst Computat Sci, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[4] IBM Res Tokyo, IBM Quantum, 19-21 Nihonbashi Hakozaki Cho,Chuo Ku, Tokyo 1038510, Japan
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 04期
基金
瑞士国家科学基金会;
关键词
LATTICE GAUGE-THEORIES;
D O I
10.1103/PhysRevResearch.5.043250
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum machine learning with parametrised quantum circuits has attracted significant attention over the past years as an early application for the era of noisy quantum processors. However, the possibility of achieving concrete advantages over classical counterparts in practical learning tasks is yet to be demonstrated. A promising avenue to explore potential advantages is the learning of data generated by quantum mechanical systems and presented in an inherently quantum mechanical form. In this article, we explore the applicability of quantum data learning to practical problems in high-energy physics, aiming to identify domain specific use-cases where quantum models can be employed. We consider quantum states governed by one-dimensional lattice gauge theories and a phenomenological quantum field theory in particle physics, generated by digital quantum simulations or variational methods to approximate target states. We make use of an ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states in the Schwinger model, (de)confinement phases from time-evolved states in the Z2 gauge theory, and that it can extract fermion flavor/coupling constants in a quantum simulation of parton shower. The observation of nontrivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum data learning architecture in high-energy physics.
引用
收藏
页数:14
相关论文
共 96 条
[61]   Two-Dimensional Z2 Lattice Gauge Theory on a Near-Term Quantum Simulator: Variational Quantum Optimization, Confinement, and Topological Order [J].
Lumia, Luca ;
Torta, Pietro ;
Mbeng, Glen B. ;
Santoro, Giuseppe E. ;
Ercolessi, Elisa ;
Burrello, Michele ;
Wauters, Matteo M. .
PRX QUANTUM, 2022, 3 (02)
[62]   Quantum computing models for artificial neural networks [J].
Mangini, S. ;
Tacchino, F. ;
Gerace, D. ;
Bajoni, D. ;
Macchiavello, C. .
EPL, 2021, 134 (01)
[63]   Two-dimensional lattice gauge theories with superconducting quantum circuits [J].
Marcos, D. ;
Widmer, P. ;
Rico, E. ;
Hafezi, M. ;
Rabl, P. ;
Wiese, U. -J. ;
Zoller, P. .
ANNALS OF PHYSICS, 2014, 351 :634-654
[64]   Real-time dynamics of lattice gauge theories with a few-qubit quantum computer [J].
Martinez, Esteban A. ;
Muschik, Christine A. ;
Schindler, Philipp ;
Nigg, Daniel ;
Erhard, Alexander ;
Heyl, Markus ;
Hauke, Philipp ;
Dalmonte, Marcello ;
Monz, Thomas ;
Zoller, Peter ;
Blatt, Rainer .
NATURE, 2016, 534 (7608) :516-+
[65]   Toward scalable simulations of lattice gauge theories on quantum computers [J].
Mathis, Simon, V ;
Mazzola, Guglielmo ;
Tavernelli, Ivano .
PHYSICAL REVIEW D, 2020, 102 (09)
[66]   Gauge-invariant quantum circuits for U(1) and Yang-Mills lattice gauge theories [J].
Mazzola, Giulia ;
Mathis, Simon, V ;
Mazzola, Guglielmo ;
Tavernelli, Ivano .
PHYSICAL REVIEW RESEARCH, 2021, 3 (04)
[67]   Barren plateaus in quantum neural network training landscapes [J].
McClean, Jarrod R. ;
Boixo, Sergio ;
Smelyanskiy, Vadim N. ;
Babbush, Ryan ;
Neven, Hartmut .
NATURE COMMUNICATIONS, 2018, 9
[68]   Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits [J].
Mezzacapo, A. ;
Rico, E. ;
Sabin, C. ;
Egusquiza, I. L. ;
Lamata, L. ;
Solano, E. .
PHYSICAL REVIEW LETTERS, 2015, 115 (24)
[69]   Quantum algorithms for quantum dynamics [J].
Miessen, Alexander ;
Ollitrault, Pauline J. ;
Tacchino, Francesco ;
Tavernelli, Ivano .
NATURE COMPUTATIONAL SCIENCE, 2023, 3 (01) :25-37
[70]  
Mildenberger J, 2022, Arxiv, DOI arXiv:2203.08905