Silicon-Based Avalanche Photodiodes: Advancements and Applications in Medical Imaging

被引:13
作者
Lozovoy, Kirill A. [1 ]
Douhan, Rahaf M. H. [1 ]
Dirko, Vladimir V. [1 ]
Deeb, Hazem [1 ]
Khomyakova, Kristina I. [1 ]
Kukenov, Olzhas I. [1 ]
Sokolov, Arseniy S. [1 ]
Akimenko, Nataliya Yu. [2 ]
Kokhanenko, Andrey P. [1 ]
机构
[1] Natl Res Tomsk State Univ, Fac Radiophys, Dept Quantum Elect & Photon, Lenin Av 36, Tomsk 634050, Russia
[2] Pacific Natl Univ, Dept Engn Syst & Technosphere Safety, Tihookeanskaya St 136, Khabarovsk 680035, Russia
关键词
photodetectors; medical imaging; positron emission tomography; single-photon emission computed tomography; time-of-flight positron emission tomography; computed tomography; fluorescence imaging; bioluminescence imaging; optical coherence tomography; SINGLE-PHOTON DETECTOR; QUANTUM DOTS; DIODE IMAGERS; SI; GE; GUIDE; PERFORMANCE; PHOTODETECTORS; SIMULATIONS; EFFICIENCY;
D O I
10.3390/nano13233078
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Avalanche photodiodes have emerged as a promising technology with significant potential for various medical applications. This article presents an overview of the advancements and applications of avalanche photodiodes in the field of medical imaging. Avalanche photodiodes offer distinct advantages over traditional photodetectors, including a higher responsivity, faster response times, and superior signal-to-noise ratios. These characteristics make avalanche photodiodes particularly suitable for medical-imaging modalities that require a high detection efficiency, excellent timing resolution, and enhanced spatial resolution. This review explores the key features of avalanche photodiodes, discusses their applications in medical-imaging techniques, and highlights the challenges and future prospects in utilizing avalanche photodiodes for medical purposes. Special attention is paid to the recent progress in silicon-compatible avalanche photodiodes.
引用
收藏
页数:24
相关论文
共 145 条
[41]   Single-photon detectors for optical quantum information applications [J].
Hadfield, Robert H. .
NATURE PHOTONICS, 2009, 3 (12) :696-705
[42]   Single photon avalanche detectors: prospects of new quenching and gain mechanisms [J].
Hall, David ;
Liu, Yu-Hsin ;
Lo, Yu-Hwa .
NANOPHOTONICS, 2015, 4 (04) :397-412
[43]   Applications of nanoparticles in biomedical imaging [J].
Han, Xiangjun ;
Xu, Ke ;
Taratula, Olena ;
Farsad, Khashayar .
NANOSCALE, 2019, 11 (03) :799-819
[44]   Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges [J].
He, Xiaoxiao ;
Gao, Jinhao ;
Gambhir, Sanjiv Sam ;
Cheng, Zhen .
TRENDS IN MOLECULAR MEDICINE, 2010, 16 (12) :574-583
[45]   An overview of recent advances in quantum dots for biomedical applications [J].
He, Xuewen ;
Ma, Nan .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2014, 124 :118-131
[46]   Near-infrared fluorescence: application to in vivo molecular imaging [J].
Hilderbrand, Scott A. ;
Weissleder, Ralph .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2010, 14 (01) :71-79
[47]   Biomedical engineering of two-dimensional MXenes [J].
Huang, Hui ;
Dong, Caihong ;
Feng, Wei ;
Wang, Ying ;
Huang, Bingcang ;
Chen, Yu .
ADVANCED DRUG DELIVERY REVIEWS, 2022, 184
[48]   Mid-infrared photon counting and resolving via efficient frequency upconversion [J].
Huang, Kun ;
Wang, Yinqi ;
Fang, Jianan ;
Kang, Weiyan ;
Sun, Ying ;
Liang, Yan ;
Hao, Qiang ;
Yan, Ming ;
Zeng, Heping .
PHOTONICS RESEARCH, 2021, 9 (02) :259-265
[49]   Performance of a low gain avalanche detector in a medical linac and characterisation of the beam profile [J].
Isidori, T. ;
McCavana, P. ;
McClean, B. ;
McNulty, R. ;
Minafra, N. ;
Raab, N. ;
Rock, L. ;
Royon, C. .
PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (13)
[50]   Nanostructures with Ge-Si quantum dots for infrared photodetectors [J].
Izhnin, I. I. ;
Fitsycha, O. I. ;
Voitsekhovskii, A. V. ;
Kokhanenko, A. P. ;
Lozovoy, K. A. ;
Dirko, V. V. .
OPTO-ELECTRONICS REVIEW, 2018, 26 (03) :195-200