A feature fusion-based attention graph convolutional network for 3D classification and segmentation

被引:1
|
作者
Yang, Chengyong [1 ,3 ]
Wang, Jie [1 ]
Wei, Shiwei [2 ]
Yu, Xiukang [1 ]
机构
[1] Guilin Univ Technol, Sch Informat Sci & Engn, Guilin 541006, Guangxi, Peoples R China
[2] Guilin Univ Aerosp Technol, Sch Comp Sci & Engn, Guilin 541004, Guangxi, Peoples R China
[3] Guilin Univ Technol, Network & Informat Ctr, Guilin 541006, Guangxi, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2023年 / 31卷 / 12期
基金
中国国家自然科学基金;
关键词
3D point cloud; point cloud classification and segmentation; attention graph convolution; error feedback mechanism; feature fusion;
D O I
10.3934/era.2023373
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Among all usual formats of representing 3D objects, including depth image, mesh and volumetric grid, point cloud is the most commonly used and preferred format, because it preserves the original geometric information in 3D space without any discretization and can provide a comprehensive understanding of the target objects. However, due to their unordered and unstructured nature, conventional deep learning methods such as convolutional neural networks cannot be directly applied to point clouds, which poses a challenge for extracting semantic features from them. This paper proposes a feature fusion algorithm based on attention graph convolution and error feedback, which considers global features, local features and the problem of the features loss during the learning process. Comparison experiments are conducted on the ModelNet40 and ShapeNet datasets to verify the performance of the proposed algorithm, and experimental results show that the proposed method achieves a classification accuracy of 93.1% and a part segmentation mIoU (mean Intersection over Union) of 85.4%. Our algorithm outperforms state-of-the-art algorithms, and effectively improves the accuracy of point cloud classification and segmentation with faster convergence speed.
引用
收藏
页码:7365 / 7384
页数:20
相关论文
共 50 条
  • [21] Deep Learning Feature Fusion-Based Retina Image Classification
    Zhang Tianfu
    Zhong Shuncong
    Lian Chaoming
    Zhou Ning
    Xie Maosong
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (24)
  • [22] MFFCG-Multi feature fusion for hyperspectral image classification using graph attention network
    Bhatti, Uzair Aslam
    Huang, Mengxing
    Neira-Molina, Harold
    Marjan, Shah
    Baryalai, Mehmood
    Tang, Hao
    Wu, Guilu
    Bazai, Sibghat Ullah
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 229
  • [23] MSA-Net: Multi-scale feature fusion network with enhanced attention module for 3D medical image segmentation
    Wang, Shuo
    Wang, Yuanhong
    Peng, Yanjun
    Chen, Xue
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 120
  • [24] Aircraft Classification Based on PCA and Feature Fusion Techniques in Convolutional Neural Network
    Azam, Faisal
    Rizvi, Akash
    Khan, Wazir Zada
    Aalsalem, Mohammed Y.
    Yu, Heejung
    Bin Zikria, Yousaf
    IEEE ACCESS, 2021, 9 : 161683 - 161694
  • [25] The effects of fusion-based feature extraction for fabric defect classification
    Ciklacandir, Fatma Gunseli Yasar
    Utku, Semih
    Ozdemir, Hakan
    TEXTILE RESEARCH JOURNAL, 2023, 93 (23-24) : 5448 - 5460
  • [26] FF-Net: Feature-Fusion-Based Network for Semantic Segmentation of 3D Plant Point Cloud
    Guo, Xindong
    Sun, Yu
    Yang, Hua
    PLANTS-BASEL, 2023, 12 (09):
  • [27] Feature Fusion Based on Graph Convolution Network for Modulation Classification in Underwater Communication
    Yao, Xiaohui
    Yang, Honghui
    Sheng, Meiping
    ENTROPY, 2023, 25 (07)
  • [28] Hyperspectral Image Classification Based on 3D Coordination Attention Mechanism Network
    Shi, Cuiping
    Liao, Diling
    Zhang, Tianyu
    Wang, Liguo
    REMOTE SENSING, 2022, 14 (03)
  • [29] Feature Fusion for Human Action Recognition based on Classical Descriptors and 3D convolutional networks
    Qin, Yang
    Mo, Lingfei
    Xie, Benyi
    2017 ELEVENTH INTERNATIONAL CONFERENCE ON SENSING TECHNOLOGY (ICST), 2017, : 487 - 491
  • [30] An Instance Segmentation Method for Insulator Defects Based on an Attention Mechanism and Feature Fusion Network
    Wu, Junpeng
    Deng, Qitong
    Xian, Ran
    Tao, Xinguang
    Zhou, Zhi
    APPLIED SCIENCES-BASEL, 2024, 14 (09):