GRIMGEP: Learning Progress for Robust Goal Sampling in Visual Deep Reinforcement Learning

被引:2
|
作者
Kovac, Grgur [1 ]
Laversanne-Finot, Adrien [1 ]
Oudeyer, Pierre-Yves [1 ]
机构
[1] INRIA Bordeaux, Flowers Lab, F-33400 Talence, France
关键词
Goal exploration; learning progress; reinforcement learning (RL); INTRINSIC MOTIVATION; EXPLORATION; SYSTEMS;
D O I
10.1109/TCDS.2022.3216911
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Autotelic reinforcement learning (RL) agents sample their own goals, and try to reach them. They often prioritize goal sampling according to some intrinsic reward, ex. novelty or absolute learning progress (ALPs). Novelty-based approaches work robustly in unsupervised image-based environments when there are no distractors. However, they construct simple curricula that do not take the agent's performance into account: in complex environments, they often get attracted by impossible tasks. ALP-based approaches, which are often combined with a clustering mechanism, construct complex curricula tuned to the agent's current capabilities. Such curricula sample goals on which the agent is currently learning the most, and do not get attracted by impossible tasks. However, ALP approaches have not so far been applied to DRL agents perceiving complex environments directly in the image space. Goal regions guided intrinsically motivated goal exploration process (GRIMGEP), without using any expert knowledge, combines the ALP clustering approaches with novelty-based approaches and extends them to those complex scenarios. We experiment on a rich 3-D image-based environment with distractors using novelty-based exploration approaches: Skewfit and CountBased. We show that wrapping them with GRIMGEP-using them only in the cluster sampled by ALP-creates a better curriculum. The wrapped approaches are attracted less by the distractors, and achieve drastically better performances.
引用
收藏
页码:1396 / 1407
页数:12
相关论文
共 50 条
  • [31] Exploration Approaches in Deep Reinforcement Learning Based on Intrinsic Motivation: A Review
    Zeng J.
    Qin L.
    Xu H.
    Zhang Q.
    Hu Y.
    Yin Q.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2023, 60 (10): : 2359 - 2382
  • [32] Driver Modeling Through Deep Reinforcement Learning and Behavioral Game Theory
    Albaba, Berat Mert
    Yildiz, Yildiray
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2022, 30 (02) : 885 - 892
  • [33] Variational Dynamic for Self-Supervised Exploration in Deep Reinforcement Learning
    Bai, Chenjia
    Liu, Peng
    Liu, Kaiyu
    Wang, Lingxiao
    Zhao, Yingnan
    Han, Lei
    Wang, Zhaoran
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (08) : 4776 - 4790
  • [34] Multi-goal Reinforcement Learning via Exploring Successor Matching
    Feng, Xiaoyun
    2022 IEEE CONFERENCE ON GAMES, COG, 2022, : 401 - 408
  • [35] Bayesian Reinforcement Learning and Bayesian Deep Learning for Blockchains With Mobile Edge Computing
    Asheralieva, Alia
    Niyato, Dusit
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (01) : 319 - 335
  • [36] Learning multi-agent communication with double attentional deep reinforcement learning
    Mao, Hangyu
    Zhang, Zhengchao
    Xiao, Zhen
    Gong, Zhibo
    Ni, Yan
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2020, 34 (01)
  • [37] DRN: A Deep Reinforcement Learning Framework for News Recommendation
    Zheng, Guanjie
    Zhang, Fuzheng
    Zheng, Zihan
    Xiang, Yang
    Yuan, Nicholas Jing
    Xie, Xing
    Li, Zhenhui
    WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), 2018, : 167 - 176
  • [38] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943
  • [39] Deep Reinforcement Learning Control of a Boiling Water Reactor
    Chen, Xiangyi
    Ray, Asok
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2022, 69 (08) : 1820 - 1832
  • [40] Improving exploration in deep reinforcement learning for stock trading
    Zemzem, Wiem
    Tagina, Moncef
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2023, 72 (04) : 288 - 295