Numerical analysis of a non-clamped dynamic thermoviscoelastic contact problem

被引:0
作者
Bartman, Piotr [1 ]
Bartosz, Krzysztof [1 ]
Jureczka, Michal [1 ]
Szafraniec, Pawel [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
基金
欧盟地平线“2020”;
关键词
Non-clamped contact; Thermoviscoelastic material; Non-monotone friction law; Finite element method; Error estimate; Numerical simulations; NONMONOTONE FRICTION; SIGNORINI PROBLEM; COULOMB-FRICTION; DISCRETIZATION;
D O I
10.1016/j.nonrwa.2023.103870
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
\\In this work, we analyze a non-clamped dynamic viscoelastic contact problem involving thermal effect. The friction law is described by a non-monotone relation between the tangential stress and the tangential velocity. This leads to a system of second-order inclusion for displacement and a parabolic equation for temperature. We provide a fully discrete approximation of the problem and find optimal error estimates without any smallness assumption on the data. The theoretical result is illustrated by numerical simulations. (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] NUMERICAL ANALYSIS OF A NONMONOTONE DYNAMIC CONTACT PROBLEM OF A NON-CLAMPED PIEZOELECTRIC VISCOELASTIC BODY
    Bartosz, Krzysztof
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (04): : 961 - 980
  • [2] Analysis of a dynamic contact problem with nonmonotone friction and non-clamped boundary conditions
    Barboteu, Mikael
    Bartosz, Krzysztof
    Danan, David
    APPLIED NUMERICAL MATHEMATICS, 2018, 126 : 53 - 77
  • [3] Numerical analysis of a dynamic bilateral thermoviscoelastic contact problem with nonmonotone friction law
    Bartosz, Krzysztof
    Danan, David
    Szafraniec, Pawel
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (05) : 727 - 746
  • [4] Numerical analysis of a quasistatic thermoviscoelastic frictional contact problem
    Campo, M
    Fernández, JR
    COMPUTATIONAL MECHANICS, 2005, 35 (06) : 459 - 469
  • [5] Numerical analysis of a quasistatic thermoviscoelastic frictional contact problem
    M. Campo
    J. R. Fernández
    Computational Mechanics, 2005, 35 : 459 - 469
  • [6] Numerical analysis of a quasi-static contact problem for a thermoviscoelastic beam
    Copetti, M. I. M.
    Fernandez, J. R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (14) : 4165 - 4173
  • [7] A dynamic thermoviscoelastic contact problem with the second sound effect
    Berti, Alessia
    Copetti, Maria I. M.
    Fernandez, Jose R.
    Naso, Maria Grazia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (02) : 1163 - 1195
  • [8] Numerical analysis of the quasistatic thermoviscoelastic thermistor problem
    Fernandez, Jose R.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (02): : 353 - 366
  • [9] NUMERICAL ANALYSIS OF A HYPERBOLIC HEMIVARIATIONAL INEQUALITY ARISING IN DYNAMIC CONTACT
    Barboteu, Mikael
    Bartosz, Krzysztof
    Han, Weimin
    Janiczko, Tomasz
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 527 - 550
  • [10] Numerical analysis and simulations of contact problem with wear
    Jureczka, Michal
    Ochal, Anna
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (11) : 2980 - 2988