A survey on the application of process discovery techniques to smart spaces data

被引:8
作者
Bertrand, Yannis [1 ]
Van den Abbeele, Bram [1 ]
Veneruso, Silvestro [2 ]
Leotta, Francesco [2 ]
Mecella, Massimo [2 ]
Serral, Estefania [1 ]
机构
[1] Katholieke Univ Leuven, Res Ctr Informat Syst Engn LIRIS, Warmoesberg 26, B-1000 Brussels, Belgium
[2] Sapienza Univ Roma, Dipartimento Ingn Informat Automatica & Gestionale, Via Ariosto 25, I-00185 Rome, Italy
关键词
Process mining; Smart spaces; Sensor logs; ACTIVITY RECOGNITION; HOME ENVIRONMENTS; PROCESS MODELS; TRACKING; BEHAVIOR; HABIT;
D O I
10.1016/j.engappai.2023.106748
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
During the last years, a number of studies have experimented with applying process discovery techniques with the goal of automatically modelling human routines as if they were business processes. However, while promising results have already been achieved, applying process-oriented techniques to smart spaces data comes with its own set of challenges, due to the nature of smart spaces data and characteristics of human behaviour. This paper surveys existing approaches that apply process discovery to smart spaces data and analyses how they deal with the following challenges identified in the literature: choosing a suitable modelling formalism for human behaviour; bridging the abstraction gap between sensor and event logs; segmenting logs in traces; handling multi-user environments; and addressing human behaviour evolution. The main contribution of this article is two-fold: (i) providing the research community with an analysis of the existing applications of process discovery to smart spaces and how they address the above challenges, and (ii) assisting further research efforts by outlining opportunities for future work.
引用
收藏
页数:14
相关论文
共 98 条
[1]   A literature review on business process modelling: new frontiers of reusability [J].
Aldin, Laden ;
de Cesare, Sergio .
ENTERPRISE INFORMATION SYSTEMS, 2011, 5 (03) :359-383
[2]   Discovering role interaction models in the Emergency Room using Process Mining [J].
Alvarez, Camilo ;
Rojas, Eric ;
Arias, Michael ;
Munoz-Gama, Jorge ;
Sepulveda, Marcos ;
Herskovic, Valeria ;
Capurro, Daniel .
JOURNAL OF BIOMEDICAL INFORMATICS, 2018, 78 :60-77
[3]  
Ampatzoglou A., 2020, Contemporary empirical methods in software engineering, P415
[4]  
[Anonymous], 2016, OMG CASE MANAGEMENT
[5]   Automated Discovery of Process Models from Event Logs: Review and Benchmark [J].
Augusto, Adriano ;
Conforti, Raffaele ;
Dumas, Marlon ;
La Rosa, Marcello ;
Maggi, Fabrizio Maria ;
Marrella, Andrea ;
Mecella, Massimo ;
Soo, Allar .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (04) :686-705
[6]  
Aztiria A., 2010, 2010 6th International Conference on Intelligent Environments (IE), P7, DOI 10.1109/IE.2010.9
[7]   The biggest business process management problems to solve before we die [J].
Beerepoot, Iris ;
Di Ciccio, Claudio ;
Reijers, Hajo A. ;
Rinderle-Ma, Stefanie ;
Bandara, Wasana ;
Burattin, Andrea ;
Calvanese, Diego ;
Chen, Tianwa ;
Cohen, Izack ;
Depaire, Benoit ;
Di Federico, Gemma ;
Dumas, Marlon ;
van Dun, Christopher ;
Fehrer, Tobias ;
Fischer, Dominik A. ;
Gal, Avigdor ;
Indulska, Marta ;
Isahagian, Vatche ;
Klinkmueller, Christopher ;
Kratsch, Wolfgang ;
Leopold, Henrik ;
Van Looy, Amy ;
Lopez, Hugo ;
Lukumbuzya, Sanja ;
Mendling, Jan ;
Meyers, Lara ;
Moder, Linda ;
Montali, Marco ;
Muthusamy, Vinod ;
Reichert, Manfred ;
Rizk, Yara ;
Rosemann, Michael ;
Roeglinger, Maximilian ;
Sadiq, Shazia ;
Seiger, Ronny ;
Slaats, Tijs ;
Simkus, Mantas ;
Someh, Ida Asadi ;
Weber, Barbara ;
Weber, Ingo ;
Weske, Mathias ;
Zerbato, Francesca .
COMPUTERS IN INDUSTRY, 2023, 146
[8]  
Bertrand Y., 2022, ICPM WORKSH, P57, DOI DOI 10.1007/978-3-031-27815-05
[9]  
Bose HPJC, 2012, LECT NOTES BUS INF P, V107, P33
[10]  
Bruno B, 2013, IEEE INT CONF ROBOT, P1602, DOI 10.1109/ICRA.2013.6630784