Unsupervised Prostate Cancer Histopathology Image Segmentation via Meta-Learning

被引:2
作者
Fetisov, Nikolai [1 ]
Hall, Lawrence [1 ]
Goldgof, Dantry [1 ]
Schabath, Matthew [2 ]
机构
[1] Univ S Florida, Dept Comp Sci & Engn, Tampa, FL 33620 USA
[2] HL Moffitt Canc Ctr & Res Inst, Dept Canc Epidemiol, Tampa, FL USA
来源
2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS | 2023年
关键词
histopathology; prostate cancer; unsupervised segmentation; meta learning;
D O I
10.1109/CBMS58004.2023.00329
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel unsupervised meta-learning based segmentation algorithm for histopathology images. The proposed algorithm does not require any kind of patch-level annotations and relies solely on image labels, corresponding to any classification task, and direct feedback from a classifier. Furthermore, instead of simply segmenting histopathology images into different types of tissue, our algorithm determines the relative importance of each tissue region. After thresholding, the produced segmentations can also be used as regions of interest for various machine learning based diagnosis systems. We have tested our approach on Prostate cANcer graDe Assessment (PANDA) dataset and obtained 0.79 AUC, when testing the segmentation performance at patch-level, and 0.432 Dice coefficient, when testing precise segmentation, which is comparable to 0.446, described in related work which performed a supervised segmentation with U-Net. Note that no pixel level annotations were used.
引用
收藏
页码:838 / 844
页数:7
相关论文
共 24 条
  • [1] Bejnordi B.E., 2015, Medical Imaging 2015: Digital Pathology, V9420, P99
  • [2] Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge
    Bulten, Wouter
    Kartasalo, Kimmo
    Chen, Po-Hsuan Cameron
    Strom, Peter
    Pinckaers, Hans
    Nagpal, Kunal
    Cai, Yuannan
    Steiner, David F.
    van Boven, Hester
    Vink, Robert
    Hulsbergen-van de Kaa, Christina
    van der Laak, Jeroen
    Amin, Mahul B.
    Evans, Andrew J.
    van der Kwast, Theodorus
    Allan, Robert
    Humphrey, Peter A.
    Gronberg, Henrik
    Samaratunga, Hemamali
    Delahunt, Brett
    Tsuzuki, Toyonori
    Hakkinen, Tomi
    Egevad, Lars
    Demkin, Maggie
    Dane, Sohier
    Tan, Fraser
    Valkonen, Masi
    Corrado, Greg S.
    Peng, Lily
    Mermel, Craig H.
    Ruusuvuori, Pekka
    Litjens, Geert
    Eklund, Martin
    [J]. NATURE MEDICINE, 2022, 28 (01) : 154 - +
  • [3] HistoSegNet: Semantic Segmentation of Histological Tissue Type in Whole Slide Images
    Chan, Lyndon
    Hosseini, Mahdi S.
    Rowsell, Corwyn
    Plataniotis, Konstantinos N.
    Damaskinos, Savvas
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 10661 - 10670
  • [4] Chaturvedi N., 2022, 2022 IEEE International Conference on Plasma Science (ICOPS)., DOI 10.1109/ICOPS45751.2022.9813172
  • [5] PUB-SalNet: A Pre-Trained Unsupervised Self-Aware Backpropagation Network for Biomedical Salient Segmentation
    Chen, Feiyang
    Jiang, Ying
    Zeng, Xiangrui
    Zhang, Jing
    Gao, Xin
    Xu, Min
    [J]. ALGORITHMS, 2020, 13 (05)
  • [6] Chollet F., 2015, About us
  • [7] Finn C, 2017, PR MACH LEARN RES, V70
  • [8] Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830
  • [9] Meta-Learning in Neural Networks: A Survey
    Hospedales, Timothy
    Antoniou, Antreas
    Micaelli, Paul
    Storkey, Amos
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5149 - 5169
  • [10] Bottom-up unsupervised image segmentation using FC-Dense u-net based deep representation clustering and multidimensional feature fusion based region merging
    Khan, Zubair
    Yang, Jie
    [J]. IMAGE AND VISION COMPUTING, 2020, 94