Stability of Multi-Parametric Prostate MRI Radiomic Features to Variations in Segmentation

被引:3
作者
Seetha, Sithin Thulasi [1 ,2 ,10 ]
Garanzini, Enrico [3 ]
Tenconi, Chiara [4 ,5 ]
Marenghi, Cristina [6 ]
Avuzzi, Barbara [7 ]
Catanzaro, Mario [8 ]
Stagni, Silvia [8 ]
Villa, Sergio [7 ]
Chiorda, Barbara Noris [7 ]
Badenchini, Fabio [6 ]
Bertocchi, Elena [6 ]
Sanduleanu, Sebastian [2 ]
Pignoli, Emanuele [4 ]
Procopio, Giuseppe [6 ]
Valdagni, Riccardo [1 ,5 ]
Rancati, Tiziana [9 ]
Nicolai, Nicola [8 ]
Messina, Antonella [3 ]
机构
[1] Fdn IRCCS Ist Nazl Tumori, Prostate Canc Program, I-20133 Milan, Italy
[2] Maastricht Univ, GROW Sch Oncol & Dev Biol, Dept Precis Med, NL-6211 LK Maastricht, Netherlands
[3] Fdn IRCCS Ist Nazl Tumori, Dept Radiol, I-20133 Milan, Italy
[4] Fdn IRCCS Ist Nazl Tumori, Dept Med Phys, I-20133 Milan, Italy
[5] Univ Milan, Dept Oncol & Hematooncol, I-20133 Milan, Italy
[6] Fdn IRCCS Ist Nazl Tumori, Unit Genito Urinary Med Oncol, I-20133 Milan, Italy
[7] Fdn IRCCS Ist Nazl Tumori, Dept Radiat Oncol, I-20133 Milan, Italy
[8] Fdn IRCCS Ist Nazl Tumori, Dept Urol, I-20133 Milan, Italy
[9] Fdn IRCCS Ist Nazl Tumori, Data Sci Unit, I-20133 Milan, Italy
[10] Univ Pavia, Dept Clin Surg Diagnost & Pediat Sci, I-27100 Pavia, Italy
来源
JOURNAL OF PERSONALIZED MEDICINE | 2023年 / 13卷 / 07期
关键词
radiomics; multi-parametric MRI; prostate; ACTIVE SURVEILLANCE; CANCER; CT; INFORMATION; ROBUSTNESS; BIOPSY;
D O I
10.3390/jpm13071172
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Stability analysis remains a fundamental step in developing a successful imaging biomarker to personalize oncological strategies. This study proposes an in silico contour generation method for simulating segmentation variations to identify stable radiomic features. Ground-truth annotation provided for the whole prostate gland on the multi-parametric MRI sequences (T2w, ADC, and SUB-DCE) were perturbed to mimic segmentation differences observed among human annotators. In total, we generated 15 synthetic contours for a given image-segmentation pair. One thousand two hundred twenty-four unfiltered/filtered radiomic features were extracted applying Pyradiomics, followed by stability assessment using ICC(1,1). Stable features identified in the internal population were then compared with an external population to discover and report robust features. Finally, we also investigated the impact of a wide range of filtering strategies on the stability of features. The percentage of unfiltered (filtered) features that remained robust subjected to segmentation variations were T2w-36% (81%), ADC-36% (94%), and SUB-43% (93%). Our findings suggest that segmentation variations can significantly impact radiomic feature stability but can be mitigated by including pre-filtering strategies as part of the feature extraction pipeline.
引用
收藏
页数:22
相关论文
共 61 条
  • [1] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] Radiomic Features on MRI Enable Risk Categorization of Prostate Cancer Patients on Active Surveillance: Preliminary Findings
    Algohary, Ahmad
    Viswanath, Satish
    Shiradkar, Rakesh
    Ghose, Soumya
    Pahwa, Shivani
    Moses, Daniel
    Jambor, Ivan
    Shnier, Ronald
    Bohm, Maret
    Haynes, Anne-Maree
    Brenner, Phillip
    Delprado, Warick
    Thompson, James
    Pulbrock, Marley
    Purysko, Andrei S.
    Verma, Sadhna
    Ponsky, Lee
    Stricker, Phillip
    Madabhushi, Anant
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (03) : 818 - 828
  • [3] Robustness and Reproducibility of Radiomics in Magnetic Resonance Imaging A Phantom Study
    Baessler, Bettina
    Weiss, Kilian
    dos Santos, Daniel Pinto
    [J]. INVESTIGATIVE RADIOLOGY, 2019, 54 (04) : 221 - 228
  • [4] Reproducibility and Prognosis of Quantitative Features Extracted from CT Images
    Balagurunathan, Yoganand
    Gu, Yuhua
    Wang, Hua
    Kumar, Virendra
    Grove, Olya
    Hawkins, Sam
    Kim, Jongphil
    Goldgof, Dmitry B.
    Hall, Lawrence O.
    Gatenby, Robert A.
    Gillies, Robert J.
    [J]. TRANSLATIONAL ONCOLOGY, 2014, 7 (01) : 72 - 87
  • [5] The Emerging Role of MRI in Prostate Cancer Active Surveillance and Ongoing Challenges
    Barrett, Tristan
    Haider, Masoom A.
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2017, 208 (01) : 131 - 139
  • [6] DCE MRI of prostate cancer
    Berman, Rose M.
    Brown, Anna M.
    Chang, Silvia D.
    Sankineni, Sandeep
    Kadakia, Meet
    Wood, Bradford J.
    Pinto, Peter A.
    Choyke, Peter L.
    Turkbey, Baris
    [J]. ABDOMINAL RADIOLOGY, 2016, 41 (05) : 844 - 853
  • [7] PETER PHAN: An MRI phantom for the optimisation of radiomic studies of the female pelvis
    Bianchini, Linda
    Botta, Francesca
    Origgi, Daniela
    Rizzo, Stefania
    Mariani, Manuel
    Summers, Paul
    Garcia-Polo, Pablo
    Cremonesi, Marta
    Lascialfari, Alessandro
    [J]. PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2020, 71 : 71 - 81
  • [8] Technical Note: Virtual phantom analyses for preprocessing evaluation and detection of a robust feature set for MRI-radiomics of the brain
    Bologna, Marco
    Corino, Valentina
    Mainardi, Luca
    [J]. MEDICAL PHYSICS, 2019, 46 (11) : 5116 - 5123
  • [9] Prostate Cancer Differentiation and Aggressiveness: Assessment With a Radiomic-Based Model vs. PI-RADS v2
    Chen, Tong
    Li, Mengjuan
    Gu, Yuefan
    Zhang, Yueyue
    Yang, Shuo
    Wei, Chaogang
    Wu, Jiangfen
    Li, Xin
    Zhao, Wenlu
    Shen, Junkang
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 49 (03) : 875 - 884
  • [10] Deep Learning-based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses
    Choe, Jooae
    Lee, Sang Min
    Do, Kyung-Hymn
    Lee, Gaeun
    Lee, June-Goo
    Seo, Joon Beom
    [J]. RADIOLOGY, 2019, 292 (02) : 365 - 373