Thermal transport in turbostratic multilayer graphene

被引:16
作者
Mohapatra, A. [1 ,2 ,3 ]
Rao, M. S. Ramachandra [2 ]
Jaiswal, Manu [1 ,3 ]
机构
[1] Indian Inst Technol Madras, Dept Phys, Chennai 600036, India
[2] Indian Inst Technol Madras, Nano Funct Mat Technol Ctr, Chennai 600036, India
[3] Indian Inst Technol Madras, Mat Sci Res Ctr, Dept Phys, Chennai 600036, India
关键词
Turbostratic graphene; Rotational stacking fault; Twisted graphene; Raman optothermal technique; thermal transport; Thermal conductivity; FEW-LAYER GRAPHENE; RAMAN-SPECTROSCOPY; CONDUCTIVITY; SCATTERING; GRAPHITE; SPECTRA;
D O I
10.1016/j.carbon.2022.08.089
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The presence of twist angles between layers of two-dimensional materials has a profound impact on their physical properties. Turbostratic multilayer graphene is a system containing a distribution of rotational stacking faults, and these interfaces also have variable twist angles. In this work, we examine the influence of turbostratic single-layer graphene content on the in-plane thermal conductivity of a defect free multilayer graphene system with low defect density. Detailed Raman mode analysis is used to quantify the content of turbostratic single-layer graphene in the system while complementing insight is obtained from selected area electron diffraction studies. Thermal transport in these systems is investigated with Raman optothermal technique supported with finite element analysis simulations. Thermal conductivity of AB-stacked graphene diminishes by a factor of 2.59 for 1% of turbostratic single-layer graphene content, while the decrease at 19% turbostratic content is by an order in magnitude. Thermal conductivity broadly obeys the relation, ⠔ & SIM; exp(-F), where F is the fraction of turbostratic single-layer graphene content in the system.
引用
收藏
页码:120 / 128
页数:9
相关论文
共 48 条
  • [1] Phononics of Graphene and Related Materials
    Balandin, Alexander A.
    [J]. ACS NANO, 2020, 14 (05) : 5170 - 5178
  • [2] Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
  • [3] Probing the Intrinsic Properties of Exfoliated Graphene: Raman Spectroscopy of Free-Standing Monolayers
    Berciaud, Stephane
    Ryu, Sunmin
    Brus, Louis E.
    Heinz, Tony F.
    [J]. NANO LETTERS, 2009, 9 (01) : 346 - 352
  • [4] Temperature dependence of the Raman spectra of graphene and graphene multilayers
    Calizo, I.
    Balandin, A. A.
    Bao, W.
    Miao, F.
    Lau, C. N.
    [J]. NANO LETTERS, 2007, 7 (09) : 2645 - 2649
  • [5] Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size
    Cancado, L. G.
    Jorio, A.
    Pimenta, M. A.
    [J]. PHYSICAL REVIEW B, 2007, 76 (06)
  • [6] Unconventional superconductivity in magic-angle graphene superlattices
    Cao, Yuan
    Fatemi, Valla
    Fang, Shiang
    Watanabe, Kenji
    Taniguchi, Takashi
    Kaxiras, Efthimios
    Jarillo-Herrero, Pablo
    [J]. NATURE, 2018, 556 (7699) : 43 - +
  • [7] Raman Signature of Graphene Superlattices
    Carozo, Victor
    Almeida, Clara M.
    Ferreira, Erlon H. M.
    Cancado, Luiz Gustavo
    Achete, Carlos Alberto
    Jorio, Ado
    [J]. NANO LETTERS, 2011, 11 (11) : 4527 - 4534
  • [8] Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle
    Carr, Stephen
    Massatt, Daniel
    Fang, Shiang
    Cazeaux, Paul
    Luskin, Mitchell
    Kaxiras, Efthimios
    [J]. PHYSICAL REVIEW B, 2017, 95 (07)
  • [9] Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments
    Chen, Shanshan
    Moore, Arden L.
    Cai, Weiwei
    Suk, Ji Won
    An, Jinho
    Mishra, Columbia
    Amos, Charles
    Magnuson, Carl W.
    Kang, Junyong
    Shi, Li
    Ruoff, Rodney S.
    [J]. ACS NANO, 2011, 5 (01) : 321 - 328
  • [10] Phonons in twisted bilayer graphene
    Cocemasov, Alexandr I.
    Nika, Denis L.
    Balandin, Alexander A.
    [J]. PHYSICAL REVIEW B, 2013, 88 (03)