Low-light image enhancement for infrared and visible image fusion

被引:3
|
作者
Zhou, Yiqiao [1 ]
Xie, Lisiqi [1 ]
He, Kangjian [1 ]
Xu, Dan [1 ,3 ]
Tao, Dapeng [1 ]
Lin, Xu [2 ]
机构
[1] Yunnan Univ, Sch Informat Sci & Engn, Kunming, Peoples R China
[2] Yunnan Union Vis Innovat Technol Co Ltd, Kunming, Peoples R China
[3] Yunnan Univ, Sch Informat Sci & Engn, Kunming 650091, Peoples R China
基金
中国国家自然科学基金;
关键词
image denoising; image enhancement; image fusion; INFORMATION; NEST;
D O I
10.1049/ipr2.12857
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Infrared and visible image fusion (IVIF) is an essential branch of image fusion, and enhancing the visible image of IVIF can significantly improve the fusion performance. However, many existing low-light enhancement methods are unsuitable for the visible image enhancement of IVIF. In order to solve this problem, this paper proposes a new visible image enhancement method for IVIF. Firstly, the colour balance and contrast enhancement-based self-calibrated illumination estimation (CCSCE) is proposed to improve the input image's brightness, contrast, and colour information. Then, the method based on Mutually Guided Image Filtering (muGIF) is adopted to design a strategy to extract details adaptively from the original visible image, which can keep details without introducing additional noise effectively. Finally, the proposed visible image enhancement technique is used for IVIF tasks. In addition, the proposed method can be used for the visible image enhancement of IVIF and other low-light images. Experiment results on different public datasets and IVIF demonstrate the authors' method's superiority from both qualitative and quantitative comparisons. The authors' code will be publicly available at .
引用
收藏
页码:3216 / 3234
页数:19
相关论文
共 50 条
  • [1] LLE-Fuse: Lightweight Infrared and Visible Light Image Fusion Based on Low-Light Image Enhancement
    Qian, Song
    Yiming, Guzailinuer
    Li, Ping
    Yang, Junfei
    Xue, Yan
    Zhang, Shuping
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (03): : 4069 - 4091
  • [2] LENFusion: A Joint Low-Light Enhancement and Fusion Network for Nighttime Infrared and Visible Image Fusion
    Chen, Jun
    Yang, Liling
    Liu, Wei
    Tian, Xin
    Ma, Jiayi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 15
  • [3] LEFuse: Joint low-light enhancement and image fusion for nighttime infrared and visible images
    Cheng, Muhang
    Huang, Haiyan
    Liu, Xiangyu
    Mo, Hongwei
    Zhao, Xiongbo
    Wu, Songling
    NEUROCOMPUTING, 2025, 626
  • [4] Research on fusion technology based on low-light visible image and infrared image
    Liu, Shuo
    Piao, Yan
    Tahir, Muhammad
    OPTICAL ENGINEERING, 2016, 55 (12)
  • [5] LEFuse: Joint low-light enhancement and image fusion for nighttime infrared and visible images
    Acar, Berat Cinar
    Yuksekdag, Zehranur
    Yilmaz, Ebru Sebnem
    INTERNATIONAL DAIRY JOURNAL, 2025, 164
  • [6] Contrast Enhanced Low-light Visible and Infrared Image Fusion
    Teku, Sandhya Kumari
    Rao, S. Koteswara
    Prabha, I. Santhi
    DEFENCE SCIENCE JOURNAL, 2016, 66 (03) : 266 - 271
  • [7] EV-Fusion: A Novel Infrared and Low-Light Color Visible Image Fusion Network Integrating Unsupervised Visible Image Enhancement
    Zhang, Xin
    Wang, Xia
    Yan, Changda
    Sun, Qiyang
    IEEE SENSORS JOURNAL, 2024, 24 (04) : 4920 - 4934
  • [8] Infrared and visible image fusion via salient object extraction and low-light region enhancement
    Liu, Yaochen
    Dong, Lili
    Xu, Wenhai
    INFRARED PHYSICS & TECHNOLOGY, 2022, 124
  • [9] Illumination enhancement discriminator and compensation attention based low-light visible and infrared image fusion
    Zhang, Xingfei
    Liu, Gang
    Wang, Gaoqiang
    Bavirisetti, Durga Prasad
    OPTICS AND LASERS IN ENGINEERING, 2025, 185
  • [10] AN IMPROVED FUSION METHOD FOR INFRARED AND LOW-LIGHT LEVEL VISIBLE IMAGE
    Wu, Ruiqing
    Yu, Dayan
    Liu, Jian
    Wu, Hao
    Chen, Wei
    Gu, Qingshui
    2017 14TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2017, : 147 - 151