Branching Brownian motion in a periodic environment and existence of pulsating traveling waves*

被引:0
作者
Ren, Yan-Xia [1 ]
Song, Renming [2 ]
Yang, Fan [3 ]
机构
[1] Peking Univ, LMAM Sch Math Sci, Beijing Beijing, Peoples R China
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
国家重点研发计划;
关键词
branching Brownian motion; periodic environment; F-KPP equation; pulsating; EQUATION; PROPAGATION; CONVERGENCE; FRONTS; SPEED;
D O I
10.1214/23-EJP960
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we first study the limits of the additive and derivative martingales of one-dimensional branching Brownian motion in a periodic environment. Then we prove the existence of pulsating traveling wave solutions of the corresponding F-KPP equation in the supercritical and critical cases by representing the solutions probabilistically in terms of the limits of the additive and derivative martingales. We also prove that there is no pulsating traveling wave solution in the subcritical case. Our main tools are the spine decomposition and martingale change of measures.
引用
收藏
页码:1 / 50
页数:50
相关论文
共 42 条
[1]  
Berestycki H, 2005, J EUR MATH SOC, V7, P173
[2]   Front propagation in periodic excitable media [J].
Berestycki, H ;
Hamel, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (08) :949-1032
[3]  
Biggins J. D., 1995, TREES
[4]  
Biggins JD, 1997, ANN PROBAB, V25, P337
[5]   Measure change in multitype branching [J].
Biggins, JD ;
Kyprianou, AE .
ADVANCES IN APPLIED PROBABILITY, 2004, 36 (02) :544-581
[6]  
BRAMSON M, 1983, MEM AM MATH SOC, V44, P1
[7]   MAXIMAL DISPLACEMENT OF BRANCHING BROWNIAN-MOTION [J].
BRAMSON, MD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (05) :531-581
[8]   KPP EQUATION AND SUPERCRITICAL BRANCHING BROWNIAN-MOTION IN THE SUBCRITICAL SPEED AREA - APPLICATION TO SPATIAL TREES [J].
CHAUVIN, B ;
ROUAULT, A .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 80 (02) :299-314
[9]  
Chung K.L., 1981, SEMINAR STOCHASTIC P, P1
[10]  
Chung KL., 1995, From Brownian Motion to Schrdingers Equation, DOI DOI 10.1007/978-3-642-57856-4