Electromagnetic Modeling Using Adaptive Grids - Error Estimation and Geometry Representation

被引:6
作者
Spitzer, Klaus [1 ]
机构
[1] TU Bergakademie Freiberg, Inst Geophys & Geoinformat, Gustav Zeuner Str 12, D-09599 Freiberg, Saxony, Germany
关键词
Forward modeling; Electromagnetics; Finite differences; Finite elements; Error estimators; Local refinement; Conforming and non-conforming grids; DIRECT-CURRENT RESISTIVITY; FINITE-ELEMENT SIMULATION; 2-DIMENSIONAL MAGNETOTELLURIC FIELDS; SUPERCONVERGENT PATCH RECOVERY; DATA INCORPORATING TOPOGRAPHY; DC RESISTIVITY; 3D CSEM; INDUCED POLARIZATION; UNSTRUCTURED GRIDS; 3-D INVERSION;
D O I
10.1007/s10712-023-09794-9
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This review paper addresses the development of numerical modeling of electromagnetic fields in geophysics with a focus on recent finite element simulation. It discusses ways of estimating errors of our solutions for a perfectly matched modeling domain and the problems that arise from its insufficient representation. After a brief outline of early methods and modeling approaches, the paper mainly discusses the capabilities of the finite element method formulated on unstructured grids and the advantages of local h-refinement allowing for both a flexible and largely accurate representation of the geometries of the multi-scale geomaterial and an accurate evaluation of the underlying functions representing the physical fields. In summary, the accuracy of the solution depends on the geometric mapping, the choice of the mathematical model, and the spatial discretization. Although the available error estimators do not necessarily provide reliable error bounds for our complex geomodels, they are still useful to guide grid refinement. Therefore, an overview of the most common a posteriori error estimators is given. It will be shown that the sensitivity is the most important function in both guiding the geometric mapping and the local refinement.
引用
收藏
页码:277 / 314
页数:38
相关论文
共 212 条
[1]  
Ainsworth M., 2000, PURE APPL MATH NEW Y
[2]  
Alnaes M., 2015, Archive of numerical software 3.100, V3, DOI [10.11588/ans.2015.100.20553, DOI 10.11588/ANS.2015.100.20553]
[3]   Multifrontal parallel distributed symmetric and unsymmetric solvers [J].
Amestoy, PR ;
Duff, IS ;
L'Excellent, JY .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 184 (2-4) :501-520
[4]   MFEM: A modular finite element methods library [J].
Anderson, Robert ;
Andrej, Julian ;
Barker, Andrew ;
Bramwell, Jamie ;
Camier, Jean-Sylvain ;
Cerveny, Jakub ;
Dobrev, Veselin ;
Dudouit, Yohann ;
Fisher, Aaron ;
Kolev, Tzanio ;
Pazner, Will ;
Stowell, Mark ;
Tomov, Vladimir ;
Akkerman, Ido ;
Dahm, Johann ;
Medina, David ;
Zampini, Stefano .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 81 :42-74
[5]  
[Anonymous], 1996, Applied Computational Geometry Towards Geometric Engineering, DOI DOI 10.1007/BFB0014497
[6]   A gauged finite-element potential formulation for accurate inductive and galvanic modelling of 3-D electromagnetic problems [J].
Ansari, S. M. ;
Farquharson, C. G. ;
MacLachlan, S. P. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2017, 210 (01) :105-129
[7]   3D finite-element forward modeling of electromagnetic data using vector and scalar potentials and unstructured grids [J].
Ansari, Seyedmasoud ;
Farquharson, Colin G. .
GEOPHYSICS, 2014, 79 (04) :E149-E165
[8]   Three-dimensional electromagnetic modelling and inversion from theory to application [J].
Avdeev, DB .
SURVEYS IN GEOPHYSICS, 2005, 26 (06) :767-799
[9]   Three-dimensional induction logging problems, Part I: An integral equation solution and model comparisons [J].
Avdeev, DB ;
Kuvshinov, AV ;
Pankratov, OV ;
Newman, GA .
GEOPHYSICS, 2002, 67 (02) :413-426
[10]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615