Incompressible limit for the free surface Navier-Stokes system

被引:1
作者
Masmoudi, Nader [1 ,2 ]
Rousset, Frederic [3 ]
Sun, Changzhen [4 ,5 ]
机构
[1] New York Univ Abu Dhabi, NYUAD Res Inst, POB 129188, Abu Dhabi, U Arab Emirates
[2] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[3] Univ Paris Saclay, CNRS, Lab Math Orsay UMR 8628, F-91405 Orsay, France
[4] Univ Toulouse, Inst Math Toulouse, UMR 5219, F-31062 Toulouse 9, France
[5] Univ Paul Sabatier, CNRS, 118 Route Narbonne, F-31062 Toulouse 9, France
关键词
Uniform regularity; Low Mach number limit; Free surface viscous fluids; Boundary layer; MACH NUMBER LIMIT; FREE-BOUNDARY PROBLEM; COMPRESSIBLE EULER EQUATIONS; WATER-WAVES SYSTEM; WELL-POSEDNESS; GLOBAL-SOLUTIONS; SINGULAR LIMITS; UNIFORM REGULARITY; EXISTENCE; SLIP;
D O I
10.1007/s40818-023-00148-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish uniform regularity estimates with respect to the Mach number for the three-dimensional free surface compressible Navier-Stokes system in the case of slightly well-prepared initial data in the sense that the acoustic components like the divergence of the velocity field are of size v e, e being the Mach number. These estimates allow us to justify the convergence towards the free surface incompressible Navier-Stokes system in the low Mach number limit. One of the main difficulties is the control of the regularity of the surface in presence of boundary layers with fast oscillations.
引用
收藏
页数:134
相关论文
共 78 条
  • [11] Bourguignon J.P., 1974, J FUNCT ANAL, V15, P341, DOI DOI 10.1016/0022-1236(74)90027-5
  • [12] Low Mach number limit of viscous polytropic flows: Formal asymptotics in the periodic case
    Bresch, D
    Desjardins, B
    Grenier, E
    Lin, CK
    [J]. STUDIES IN APPLIED MATHEMATICS, 2002, 109 (02) : 125 - 149
  • [13] Well-posedness of the free-surface incompressible Euler equations with or without surface tension
    Coutand, Daniel
    Shkoller, Steve
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (03) : 829 - 930
  • [14] WELL-POSEDNESS OF THE FREE-BOUNDARY COMPRESSIBLE 3-D EULER EQUATIONS WITH SURFACE TENSION AND THE ZERO SURFACE TENSION LIMIT
    Coutand, Daniel
    Hole, Jason
    Shkoller, Steve
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (06) : 3690 - 3767
  • [15] Low Mach number limit for viscous compressible flows
    Danchin, R
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (03): : 459 - 475
  • [16] Zero Mach number limit in critical spaces for compressible Navier-Stokes equations
    Danchin, R
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2002, 35 (01): : 27 - 75
  • [17] Danchin R, 2016, MATH ANN, V366, P1365, DOI 10.1007/s00208-016-1361-x
  • [18] SINGULAR LIMITS IN COMPRESSIBLE FLUID-DYNAMICS
    DAVEIGA, HB
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 128 (04) : 313 - 327
  • [19] Global solutions of the gravity-capillary water-wave system in three dimensions
    Deng, Yu
    Ionescu, Alexandru D.
    Pausader, Benoit
    Pusateri, Fabio
    [J]. ACTA MATHEMATICA, 2018, 219 (02) : 213 - 402
  • [20] Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions
    Desjardins, B
    Grenier, E
    Lions, PL
    Masmoudi, N
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (05): : 461 - 471