Existence and multiplicity of solutions to magnetic Kirchhoff equations in Orlicz-Sobolev spaces

被引:3
作者
Ochoa, Pablo [1 ]
机构
[1] Univ Nacl Cuyo & Juan A Maza, CONICET, Parque Gral, RA-5500 San Martin, Mendoza, Argentina
关键词
Fractional magnetic operators (primary); Orlicz-Sobolev spaces; g-Laplace operator; Schrodinger-Kirchhoff equations; SCHRODINGER-EQUATION; EMBEDDING-THEOREMS;
D O I
10.1007/s13540-023-00135-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and multiplicity of weak solutions to a general type of Kirchhoff equations in magnetic fractional Orlicz-Sobolev spaces. Specifically, we appeal to Critical Point Theory to prove the existence of non-trivial solutions under the so-called Ambrosetti-Rabinowitz condition. We also state the existence of ground-state solutions. Moreover, multiplicity results which yield the existence of an unbounded sequence of solutions are also provided. Finally, we show existence under a weak-type Ambrosetti-Rabinowitz condition formulated in the framework of Orlicz spaces.
引用
收藏
页码:800 / 836
页数:37
相关论文
共 50 条
  • [41] The limiting Behavior of Solutions to Inhomogeneous Eigenvalue Problems in Orlicz-Sobolev Spaces
    Bocea, Marian
    Mihailescu, Mihai
    Stancu-Dumitru, Denisa
    ADVANCED NONLINEAR STUDIES, 2014, 14 (04) : 977 - 990
  • [42] Imbeddings of anisotropic Orlicz-Sobolev spaces and applications
    Jain, P
    Lukkassen, D
    Persson, LE
    Svanstedt, N
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2002, 5 (02): : 181 - 195
  • [43] HARDY INEQUALITIES IN FRACTIONAL ORLICZ-SOBOLEV SPACES
    Salort, Ariel M.
    PUBLICACIONS MATEMATIQUES, 2022, 66 (01) : 183 - 195
  • [44] Γ-CONVERGENCE OF INHOMOGENEOUS FUNCTIONALS IN ORLICZ-SOBOLEV SPACES
    Bocea, Marian
    Mihailescu, Mihai
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2015, 58 (02) : 287 - 303
  • [45] Orlicz-Sobolev versus Holder local minimizer and multiplicity results for quasilinear elliptic equations
    Tan, Zhong
    Fang, Fei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (01) : 348 - 370
  • [46] Homogenization of obstacle problems in Orlicz-Sobolev spaces
    Marcon, Diego
    Rodrigues, Jose Francisco
    Teymurazyan, Rafayel
    PORTUGALIAE MATHEMATICA, 2018, 75 (3-4) : 267 - 283
  • [47] EIGENVALUE PROBLEMS FOR A CLASS OF BI-NONLOCAL EQUATIONS IN ORLICZ-SOBOLEV SPACES
    Nguyen Thanh Chung
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2020, 2020
  • [48] Existence results for a non-homogeneous Neumann problem through Orlicz-Sobolev spaces
    Heidarkhani, Shapour
    Caristi, Giuseppe
    Afrouzi, Ghasem A.
    Moradi, Shahin
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (02) : 241 - 253
  • [49] Uniform rotundity in every direction of Orlicz-Sobolev spaces
    Cao, Fayun
    Mao, Rui
    Wang, Bing
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [50] On the two obstacles problem in Orlicz-Sobolev spaces and applications
    Rodrigues, Jose Francisco
    Teymurazyan, Rafayel
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (7-9) : 769 - 787