Sensitivity of El Nino diversity prediction to parameters in an intermediate coupled model

被引:4
作者
Chen, Haibo [1 ,4 ]
Wang, Qiang [2 ]
Zhang, Rong-Hua [3 ,4 ,5 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Ocean Circulat & Waves, Inst Oceanol, Qingdao 266071, Peoples R China
[2] Hohai Univ, Coll Oceanog, Nanjing 210098, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Marine Sci, Nanjing 210044, Peoples R China
[4] Laosan Lab, Qingdao 266237, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Parameter sensitivity; OPSA method; Prediction skill; ENSO diversity; Intermediate coupled model; SPRING PREDICTABILITY BARRIER; NONLINEAR OPTIMAL PERTURBATION; ENSO PREDICTIONS; EASTERN-PACIFIC; IMPROVED OCEAN; NIO EVENTS; SIMULATIONS; DEFINITION; EXTENSION; SKILL;
D O I
10.1007/s00382-023-06695-w
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
There are large uncertainties that exist in El Nino-Southern Oscillation (ENSO) predictions. Errors in model parameters are one of the factors limiting ENSO prediction skill. In this study, we look for the model parameters that can induce the largest least-square changes in the sea surface temperature predictions for four El Nino events that were optimized to fit observations in the tropical Pacific: 1982 and 1987 eastern Pacific (EP) events and 1990 and 1994 central Pacific (CP) events. The ENSO model is an intermediate coupled model used at the Institute of Oceanology, Chinese Academy of Sciences (IOCAS ICM). The sensitivity of the prediction skill for each type of El Nino to the model parameters is analyzed using an optimization parameter sensitivity analysis (OPSA) method. Perturbation experiments allow us to identify three important model parameters that play a key role in ENSO dynamics from nine selected parameters. These three, alpha(Tea), alpha(tau), and alpha(HF), are related to the thermocline feedback, wind stress, and heat flux, respectively. alpha(Tea) and alpha(tau) are important for both types of El Nino events, while alpha(HF) is another important parameter that impacts CP events. Our results show that ENSO predictions can be improved by accurate estimates of the sensitive parameters identified here. In particular, it is reasonable that accurate estimates of alpha(HF) make more sense for improving CP El Nino prediction than for improving EP El Nino prediction. Increasing alpha(Tea) or alpha(tau) or decreasing alpha(HF) tends to increase the amplitudes of these warm events. The two types of El Nino events have different sensitivities to the parameter alpha(HF), which is attributed to the role played by the vertical mixing process in the eastern equatorial Pacific. These parameter sensitivity analyses provide an improved understanding of ENSO predictability, and highlight the special importance of alpha(HF) for enhancing the prediction skill for the CP El Nino.
引用
收藏
页码:2485 / 2502
页数:18
相关论文
共 79 条
  • [1] The interplay of thermodynamics and ocean dynamics during ENSO growth phase
    Bayr, Tobias
    Drews, Annika
    Latif, Mojib
    Luebbecke, Joke
    [J]. CLIMATE DYNAMICS, 2021, 56 (5-6) : 1681 - 1697
  • [2] Mean-state dependence of ENSO atmospheric feedbacks in climate models
    Bayr, Tobias
    Latif, Mojib
    Dommenget, Dietmar
    Wengel, Christian
    Harlass, Jan
    Park, Wonsun
    [J]. CLIMATE DYNAMICS, 2018, 50 (9-10) : 3171 - 3194
  • [3] Nonmonotone spectral projected gradient methods on convex sets
    Birgin, EG
    Martínez, JM
    Raydan, M
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (04) : 1196 - 1211
  • [4] Cacuci D.G., 2003, SENSITIVITY UNCERTAI, V1, DOI DOI 10.1201/9780203498798
  • [5] Understanding ENSO Diversity
    Capotondi, Antonietta
    Wittenberg, Andrew T.
    Newman, Matthew
    Di Lorenzo, Emanuele
    Yu, Jin-Yi
    Braconnot, Pascale
    Cole, Julia
    Dewitte, Boris
    Giese, Benjamin
    Guilyardi, Eric
    Jin, Fei-Fei
    Karnauskas, Kristopher
    Kirtman, Benjamin
    Lee, Tong
    Schneider, Niklas
    Xue, Yan
    Yeh, Sang-Wook
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2015, 96 (06) : 921 - 938
  • [6] ENSO diversity in the NCAR CCSM4 climate model
    Capotondi, Antonietta
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (10) : 4755 - 4770
  • [7] Predictability of El Nino over the past 148 years
    Chen, D
    Cane, MA
    Kaplan, A
    Zebiak, SE
    Huang, DJ
    [J]. NATURE, 2004, 428 (6984) : 733 - 736
  • [8] Simulations of two types of El Nio events by an optimal forcing vector approach
    Duan, Wansuo
    Tian, Ben
    Xu, Hui
    [J]. CLIMATE DYNAMICS, 2014, 43 (5-6) : 1677 - 1692
  • [9] The 'spring predictability barrier' for ENSO predictions and its possible mechanism: results from a fully coupled model
    Duan, Wansuo
    Wei, Chao
    [J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2013, 33 (05) : 1280 - 1292
  • [10] Is model parameter error related to a significant spring predictability barrier for El Nio events? Results from a theoretical model
    Duan Wansuo
    Zhang Rui
    [J]. ADVANCES IN ATMOSPHERIC SCIENCES, 2010, 27 (05) : 1003 - 1013