Upper Bound for the Diameter of a Tree in the Quantum Graph Theory

被引:0
|
作者
Boyko, O. P. [1 ]
Martynyuk, O. M. [1 ]
Pivovarchik, V. M. [1 ]
机构
[1] K Ushyns Kyi South Ukrainian Natl Pedag Univ, Odessa, Ukraine
关键词
EIGENVALUES;
D O I
10.1007/s11253-023-02128-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study two Sturm-Liouville spectral problems on an equilateral tree with continuity and Kirchhoff conditions at the internal vertices and Neumann conditions at the pendant vertices (first problem) and with Dirichlet conditions at the pendant vertices (second problem). The spectrum of each of these problems consists of infinitely many normal (isolated Fredholm) eigenvalues. It is shown that if we know the asymptotics of eigenvalues, then it is possible to estimate the diameter of a tree from above for each of these problems.
引用
收藏
页码:1165 / 1174
页数:10
相关论文
共 50 条
  • [1] Upper Bound for the Diameter of a Tree in the Quantum Graph Theory
    O. P. Boyko
    O. M. Martynyuk
    V. M. Pivovarchik
    Ukrainian Mathematical Journal, 2023, 74 : 1165 - 1174
  • [2] Note: An upper bound for the diameter of a graph
    Merris, R
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (03) : U3 - U3
  • [3] There is no upper bound for the diameter of the commuting graph of a finite group
    Giudici, Michael
    Parker, Chris
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (07) : 1600 - 1603
  • [4] Upper Bound on the Diameter of a Domination Dot-Critical Graph
    Michitaka Furuya
    Masanori Takatou
    Graphs and Combinatorics, 2013, 29 : 79 - 85
  • [5] Upper bound on the diameter of a total domination vertex critical graph
    Furuya, Michitaka
    Kato, Naoya
    ARS COMBINATORIA, 2016, 128 : 349 - 371
  • [6] Upper Bound on the Diameter of a Domination Dot-Critical Graph
    Furuya, Michitaka
    Takatou, Masanori
    GRAPHS AND COMBINATORICS, 2013, 29 (01) : 79 - 85
  • [7] AN UPPER BOUND ON THE DIAMETER OF A GRAPH FROM EIGENVALUES ASSOCIATED WITH ITS LAPLACIAN
    CHUNG, FRK
    FABER, V
    MANTEUFFEL, TA
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (03) : 443 - 457
  • [8] SPECTRAL UPPER BOUND ON THE QUANTUM K-INDEPENDENCE NUMBER OF A GRAPH
    Wocjan, Pawel
    Elphick, Clive
    Abiad, Aida
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 331 - 338
  • [9] A Lower Bound on the Diameter of the Flip Graph
    Frati, Fabrizio
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (01):
  • [10] On the upper bound of the diameter of interchange graphs
    Qian, JG
    DISCRETE MATHEMATICS, 1999, 195 (1-3) : 277 - 285