A novel hierarchical book-like structured sodium manganite for high-stable sodium-ion batteries

被引:2
|
作者
Zhang, Yue [1 ]
Wang, Hang [1 ]
Tang, Yakun [1 ]
Huang, Yudai [1 ]
Jia, Dianzeng [1 ]
机构
[1] Xinjiang Univ, Coll Chem, State Key Lab Chem & Utilizat Carbon Based Energy, Urumqi 830017, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
CATHODE MATERIALS;
D O I
10.1039/d2ra05524d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As one of the most promising cathodes for rechargeable sodium-ion batteries (SIBs), Layered transition metal oxides with high energy density show poor cycling stability. Judicious design/construction of electrode materials plays a very important role in cycling performance. Herein, a P2-Na0.7MnO2.05 cathode material with hierarchical book-like morphology combining exposed (100) active crystal facets is synthesized by hydrothermal method. Owing to the superiority of the unique hierarchical structure, the electrode delivers a high reversible capacity of 163 mA h g(-1) at 0.2C and remarkable high-rate cyclability (88.8% capacity retention after 300 cycles at 10C). Its unique oriented stacking nanosheet constructed hierarchical book-like structure is the origin of the high electrochemical performance, which is able to shorten the diffusion distances of Na+ and electrons, and a certain gap between the nanosheets can also relieve the stress and strain of volume generated during the cycle. In addition, the exposed (100) active crystal facets can provide more channels for the efficient transfer of Na+. Our strategy reported here opens a door to the development of high-stable oxide cathodes for high energy density SIBs.
引用
收藏
页码:4168 / 4172
页数:5
相关论文
共 50 条
  • [41] High Capacity and Cycle-Stable Hard Carbon Anode for Nonflammable Sodium-Ion Batteries
    Liu, Xingwei
    Jiang, Xiaoyu
    Zeng, Ziqi
    Ai, Xinping
    Yang, Hanxi
    Zhong, Faping
    Xia, Yongyao
    Cao, Yuliang
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (44) : 38141 - 38150
  • [42] Mixed polyanion cathode materials: Toward stable and high-energy sodium-ion batteries
    Zhao, Along
    Fang, Yongjin
    Ai, Xinping
    Yang, Hanxi
    Cao, Yuliang
    JOURNAL OF ENERGY CHEMISTRY, 2021, 60 : 635 - 648
  • [43] High capacity sodium-rich layered oxide cathode for sodium-ion batteries
    郭根材
    王长昊
    明帮铭
    罗斯玮
    苏恒
    王博亚
    张铭
    尉海军
    王如志
    Chinese Physics B, 2018, (11) : 669 - 675
  • [44] High capacity sodium-rich layered oxide cathode for sodium-ion batteries
    Guo, Gen-Cai
    Wang, Changhao
    Ming, Bang-Ming
    Luo, Si-Wei
    Su, Heng
    Wang, Bo-Ya
    Zhang, Ming
    Yu, Hai-Jun
    Wang, Ru-Zhi
    CHINESE PHYSICS B, 2018, 27 (11)
  • [45] Tuning the interfacial chemistry for stable and high energy density aqueous sodium-ion/sulfur batteries
    Kumar, Mukesh
    Nagaiah, Tharamani C.
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (24) : 12984 - 12996
  • [46] High-Performance Sodium-Ion Batteries and Sodium-Ion Pseudocapacitors Based on MoS2/Graphene Composites
    Wang, Yun-Xiao
    Chou, Shu-Lei
    Wexler, David
    Liu, Hua-Kun
    Dou, Shi-Xue
    CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (31) : 9607 - 9612
  • [47] Topotactic Syntopogenous Sodium Vanadium Fluoride for High-Performance Sodium-Ion Batteries: Electron and Sodium-Ion Reservoirs in Perovskite/Diperovskite Superlattice
    Guo, Ying
    Li, Kai
    Gong, Yun
    Lin, Jianhua
    NANO LETTERS, 2024, 24 (28) : 8481 - 8486
  • [48] A novel anhydrous method to prepare hard carbon with high yield for sodium-ion batteries
    Zhang, Yuting
    Bian, Zhe
    Wang, Dongge
    Miao, Yanli
    Shi, Xixi
    Zhang, Lianqi
    Li, Chunliang
    Song, Dawei
    JOURNAL OF POWER SOURCES, 2024, 623
  • [49] Lotus Seedpod-Derived Hard Carbon with Hierarchical Porous Structure as Stable Anode for Sodium-Ion Batteries
    Wu, Feng
    Zhang, Minghao
    Bai, Ying
    Wang, Xinran
    Dong, Ruiqi
    Wu, Chuan
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (13) : 12554 - 12561
  • [50] SbPS4: A novel anode for high-performance sodium-ion batteries
    Yang, Miao
    Sun, Zhonghui
    Nie, Ping
    Yu, Haiyue
    Zhao, Chende
    Yu, Mengxuan
    Luo, Zhongzhen
    Geng, Hongbo
    Wu, Xinglong
    CHINESE CHEMICAL LETTERS, 2022, 33 (01) : 470 - 474