SOBOLEV EMBEDDINGS INTO ORLICZ SPACES AND ISOCAPACITARY INEQUALITIES

被引:0
作者
Cianchi, Andrea [1 ]
Maz'ya, Vladimir G. [2 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67 A, I-50134 Florence, Italy
[2] Linkoping Univ, Dept Math, SE-58183 Linkoping, Sweden
关键词
Sobolev inequalities; irregular domains; capacity; Orlicz spaces; isoperimetric inequalities; compact embeddings; COMPLETE RIEMANNIAN MANIFOLD; ISOPERIMETRIC PROFILE; LAPLACIAN; THEOREMS; SETS;
D O I
10.1090/tran/8689
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sobolev embeddings into Orlicz spaces on domains in the Eu-clidean space or, more generally, on Riemannian manifolds are considered. Highly irregular domains where the optimal degree of integrability of a func-tion may be lower than the one of its gradient are focused. A necessary and sufficient condition for the validity of the relevant embeddings is established in terms of the isocapacitary function of the domain. Compact embeddings are discussed as well. Sufficient conditions involving the isoperimetric function of the domain are derived as a by-product.
引用
收藏
页码:91 / 121
页数:31
相关论文
共 50 条
  • [21] The bounded variation capacity and Sobolev-type inequalities on Dirichlet spaces
    Xie, Xiangyun
    Liu, Yu
    Li, Pengtao
    Huang, Jizheng
    ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)
  • [22] Compact embeddings of Besov spaces into Orlicz and Lorentz-Zygmund spaces
    Kühn, T
    Schonbek, T
    HOUSTON JOURNAL OF MATHEMATICS, 2005, 31 (04): : 1221 - 1243
  • [23] Removable Sets for Weighted Orlicz-Sobolev Spaces
    Karak, Nijjwal
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2019, 19 (03) : 473 - 486
  • [24] HOMOGENEOUS EIGENVALUE PROBLEMS IN ORLICZ-SOBOLEV SPACES
    Bonder, Julian Fernandez
    Salort, Ariel
    Vivas, Hernan
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 63 (02) : 429 - 453
  • [25] Entropy Numbers of Limiting Embeddings of Logarithmic Sobolev Spaces into Exponential Spaces
    Edmunds, David E.
    Gurka, Petr
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2010, 29 (02): : 235 - 250
  • [26] Embeddings of weighted Sobolev spaces and degenerate elliptic problems
    Guo, ZongMing
    Mei, LinFeng
    Wan, FangShu
    Guan, XiaoHong
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (08) : 1399 - 1418
  • [28] Entropy numbers of Sobolev embeddings of radial Besov spaces
    Kühn, T
    Leopold, HG
    Sickel, W
    Skrzypczak, L
    JOURNAL OF APPROXIMATION THEORY, 2003, 121 (02) : 244 - 268
  • [29] EMBEDDINGS OF ORLICZ-LORENTZ SPACES INTO L1
    Prochno, J.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2021, 32 (01) : 59 - 70
  • [30] Young measure theory for unsteady problems in Orlicz–Sobolev spaces
    Elhoussine Azroul
    Farah Balaadich
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 1265 - 1278