CUT FINITE ELEMENT METHOD FOR DIVERGENCE-FREE APPROXIMATION OF INCOMPRESSIBLE FLOW: A LAGRANGE MULTIPLIER APPROACH

被引:3
|
作者
Burman, Erik [1 ]
Hansbo, Peter [2 ]
Larson, Mats [3 ]
机构
[1] UCL, Dept Math, London WC1E 6BT, England
[2] Jonkoping Univ, Dept Mat & Mfg, SE-55111 Jonkoping, Sweden
[3] Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden
基金
瑞典研究理事会; 英国工程与自然科学研究理事会;
关键词
compatible finite elements; incompressibility; CutFEM; fictitious domain; Stokes' equations; Lagrange multipliers;
D O I
10.1137/22M1542933
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we design a cut finite element method for a low order divergence-free element applied to a boundary value problem subject to Stokes' equations. For the imposition of Dirichlet boundary conditions, we consider either Nitsche's method or a stabilized Lagrange multiplier method. In both cases, the normal component of the velocity is constrained using a multiplier, different from the standard pressure approximation. The divergence of the approximate velocities is pointwise zero over the whole mesh domain, and we derive optimal error estimates for the velocity and pressures, where the error constant is independent of how the physical domain intersects the computational mesh, and of the regularity of the pressure multiplier imposing the divergence-free condition.
引用
收藏
页码:893 / 918
页数:26
相关论文
共 25 条