Advanced TiO2/Al2O3 Bilayer ALD Coatings for Improved Lithium-Rich Layered Oxide Electrodes

被引:7
作者
Chen, Wei-Ming [1 ,2 ,3 ,4 ]
Hsieh, Hsin-Yu [1 ]
Wu, Dong-Ze [1 ,5 ]
Tang, Horng-Yi [6 ]
Chang-Liao, Kuei-Shu [4 ]
Chi, Po-Wei [1 ]
Wu, Phillip M. [1 ,7 ]
Wu, Maw-Kuen [1 ]
机构
[1] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
[2] Acad Sinica, Nano Sci & Technol Program, Taiwan Int Grad Program, Taipei 11529, Taiwan
[3] Natl Tsing Hua Univ, Taipei 11529, Taiwan
[4] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu 300044, Taiwan
[5] Natl Taiwan Univ Sci & Technol, Grad Inst Energy & Sustainabil Technol, Taipei 10607, Taiwan
[6] Natl Chi Nan Univ, Dept Appl Chem, Nantou 545301, Taiwan
[7] Natl Chung Hsing Univ, Coll Sci, Taichung 402, Taiwan
关键词
lithium-ion battery; surface modification; lithium-rich cathode; atomic layer deposition; thin film; CATHODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; SURFACE MODIFICATION; CYCLING PERFORMANCE; ION; AL2O3; CAPACITY; LI1.2MN0.54NI0.13CO0.13O2; DEPOSITION; INTERFACE;
D O I
10.1021/acsami.3c16948
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Surface modification is a highly effective strategy for addressing issues in lithium-rich layered oxide (LLO) cathodes, including phase transformation, particle cracking, oxygen gas release, and transition-metal ion dissolution. Existing single-/double-layer coating strategies face drawbacks such as poor component contact and complexity. Herein, we present the results of a low-temperature atomic layer deposition (ALD) process for creating a TiO2/Al2O3 bilayer on composite cathodes made of AS200 (Li1.08Ni0.34Co0.08Mn0.5O2). Electrochemical analysis demonstrates that TiO2/Al2O3-coated LLO electrodes exhibit improved discharge capacities and enhanced capacity retention compared with uncoated samples. The TAA-5/AS200 bilayer-coated electrode, in particular, demonstrates exceptional capacity retention (similar to 90.4%) and a specific discharge capacity of 146 mAh g(-1) after 100 cycles at 1C within the voltage range of 2.2 to 4.6 V. The coated electrodes also show reduced voltage decay, lower surface film resistance, and improved interfacial charge transfer resistances, contributing to enhanced stability. The ALD-deposited TiO2/Al2O3 bilayer coatings exhibit promising potential for advancing the electrochemical performance of lithium-rich layered oxide cathodes in lithium-ion batteries.
引用
收藏
页码:13029 / 13040
页数:12
相关论文
共 68 条
  • [1] High-rate cyclability and stability of LiMn2O4 cathode materials for lithium-ion batteries from low-cost natural β-MnO2
    Abou-Rjeily, John
    Bezza, Ilham
    Laziz, Noureddine Ait
    Autret-Lambert, Cecile
    Sougrati, Moulay Tahar
    Ghamouss, Fouad
    [J]. ENERGY STORAGE MATERIALS, 2020, 26 (26) : 423 - 432
  • [2] Cathodes for lithium ion batteries: The benefits of using nanostructured materials
    Bazito, Fernanda F. C.
    Torresi, Roberto M.
    [J]. JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2006, 17 (04) : 627 - 642
  • [3] Understanding mechanism of voltage decay and temperature sensitivity of Li-rich manganese-based cathode materials
    Cai, Xingpeng
    Zhang, Ningshuang
    Wang, Jie
    Zhou, Xinan
    Xu, Fei
    Ding, Hao
    Wang, Peng
    Song, Linhu
    Huang, Jin
    Fu, Xiaolan
    Cui, Xiaoling
    Yang, Chengchao
    Li, Shiyou
    [J]. MATERIALS & DESIGN, 2023, 225
  • [4] Voltage fade mitigation in the cationic dominant lithium-rich NCM cathode
    Chandan, Prem
    Chang, Chung-Chieh
    Yeh, Kuo-Wei
    Chiu, Chui-Chang
    Wu, Dong-Ze
    Huang, Tzu-Wen
    Wu, Phillip M.
    Chi, Po-Wei
    Hsu, Wei-Fan
    Su, Kai-Han
    Lee, Yu-Wen
    Chang, Hua-Shu
    Wang, Ming-Jye
    Wu, Heng-Liang
    Tang, Horng-Yi
    Wu, Maw-Kuen
    [J]. COMMUNICATIONS CHEMISTRY, 2019, 2 (1)
  • [5] Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries
    Chen, Cheng
    Geng, Tianfeng
    Du, Chunyu
    Zuo, Pengjian
    Cheng, Xinqun
    Ma, Yulin
    Yin, Geping
    [J]. JOURNAL OF POWER SOURCES, 2016, 331 : 91 - 99
  • [6] Ni-Rich LiNi0.8Co0.1Mn0.1O2 Oxide Coated by Dual-Conductive Layers as High Performance Cathode for Lithium-Ion Batteries
    Chen, Shi
    He, Tao
    Su, Yuefeng
    Lu, Yun
    Ban, Liying
    Chen, Lai
    Zhang, Qiyu
    Wang, Jing
    Chen, Renjie
    Wu, Feng
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (35) : 29732 - 29743
  • [7] Lithium-Rich Layered Oxide with a Porous Prism Architecture for High-Performance Cathode Materials of Lithium-Ion Batteries
    Chen, Zhaoyong
    Yan, Xiaoyan
    Zhu, Huali
    Wang, Yanxia
    Liu, Qiming
    Duan, Junfei
    Ji, Shan
    Pollet, Bruno G.
    [J]. ACS APPLIED ENERGY MATERIALS, 2022, 5 (09): : 10973 - 10982
  • [8] Interface Engineering via Regulating Electrolyte for High-Voltage Layered Oxide Cathodes-Based Li-Ion Batteries
    Cheng, Fangyuan
    Xu, Jia
    Wei, Peng
    Cheng, Zexiao
    Liao, Mengyi
    Sun, Shixiong
    Xu, Yue
    Li, Qing
    Fang, Chun
    Lin, Yaqing
    Han, Jiantao
    Huang, Yunhui
    [J]. ADVANCED SCIENCE, 2023, 10 (12)
  • [9] Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries
    Choi, Nam-Soon
    Han, Jung-Gu
    Ha, Se-Young
    Park, Inbok
    Back, Chang-Keun
    [J]. RSC ADVANCES, 2015, 5 (04) : 2732 - 2748
  • [10] Countering the Voltage Decay in High Capacity xLi2MnO3•(1-x)LiMO2 Electrodes (M=Mn, Ni, Co) for Li+-Ion Batteries
    Croy, Jason R.
    Kim, Donghan
    Balasubramanian, Mahalingam
    Gallagher, Kevin
    Kang, Sun-Ho
    Thackeray, Michael M.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (06) : A781 - A790