Integrated Analysis of Gut Microbiome and Adipose Transcriptome Reveals Beneficial Effects of Resistant Dextrin from Wheat Starch on Insulin Resistance in Kunming Mice

被引:5
作者
Chen, Xinyang [1 ,2 ]
Hou, Yinchen [1 ,3 ]
Liao, Aimei [1 ,2 ]
Pan, Long [1 ,2 ]
Yang, Shengru [3 ]
Liu, Yingying [1 ,2 ]
Wang, Jingjing [1 ,2 ]
Xue, Yingchun [1 ,2 ]
Zhang, Mingyi [1 ,2 ]
Zhu, Zhitong [1 ,2 ]
Huang, Jihong [1 ,2 ,4 ,5 ]
机构
[1] Food Lab Zhongyuan, Luohe 462300, Peoples R China
[2] Henan Univ Technol, Sch Biol Engn, Zhengzhou 450001, Peoples R China
[3] Henan Univ Anim Husb & Econ, Coll Food & Biol Engn, Zhengzhou 450046, Peoples R China
[4] Henan Univ, Coll Agr, State Key Lab Crop Stress Adaptat & Improvement, Kaifeng 475004, Peoples R China
[5] Xuchang Univ, Sch Food & Pharm, Xuchang 461000, Peoples R China
关键词
resistant dextrin; insulin resistance; inflammation; gut microbiota; transcriptome; OBESITY; THERMOGENESIS; METABOLITES; DYSFUNCTION; EXTRACT; FOCUS;
D O I
10.3390/biom14020186
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Systemic chronic inflammation is recognized as a significant contributor to the development of obesity-related insulin resistance. Previous studies have revealed the physiological benefits of resistant dextrin (RD), including obesity reduction, lower fasting glucose levels, and anti-inflammation. The present study investigated the effects of RD intervention on insulin resistance (IR) in Kunming mice, expounding the mechanisms through the gut microbiome and transcriptome of white adipose. In this eight-week study, we investigated changes in tissue weight, glucose-lipid metabolism levels, serum inflammation levels, and lesions of epididymal white adipose tissue (eWAT) evaluated via Hematoxylin and Eosin (H&E) staining. Moreover, we analyzed the gut microbiota composition and transcriptome of eWAT to assess the potential protective effects of RD intervention. Compared with a high-fat, high-sugar diet (HFHSD) group, the RD intervention significantly enhanced glucose homeostasis (e.g., AUC-OGTT, HOMA-IR, p < 0.001), and reduced lipid metabolism (e.g., TG, LDL-C, p < 0.001) and serum inflammation levels (e.g., IL-1 beta, IL-6, p < 0.001). The RD intervention also led to changes in the gut microbiota composition, with an increase in the abundance of probiotics (e.g., Parabacteroides, Faecalibaculum, and Muribaculum, p < 0.05) and a decrease in harmful bacteria (Colidextribacter, p < 0.05). Moreover, the RD intervention had a noticeable effect on the gene transcription profile of eWAT, and KEGG enrichment analysis revealed that differential genes were enriched in PI3K/AKT, AMPK, in glucose-lipid metabolism, and in the regulation of lipolysis in adipocytes signaling pathways. The findings demonstrated that RD not only ameliorated IR, but also remodeled the gut microbiota and modified the transcriptome profile of eWAT.
引用
收藏
页数:17
相关论文
共 67 条
[1]   Adipose tissue and insulin resistance in obese [J].
Ahmed, Bulbul ;
Sultana, Rifat ;
Greene, Michael W. .
BIOMEDICINE & PHARMACOTHERAPY, 2021, 137
[2]   Sex differences in type 2 diabetes: focus on disease course and outcomes [J].
Arnetz, Lisa ;
Ekberg, Neda Rajamand ;
Alvarsson, Michael .
DIABETES METABOLIC SYNDROME AND OBESITY-TARGETS AND THERAPY, 2014, 7 :409-420
[3]   Effect of Resistant Dextrin on Intestinal Gas Homeostasis and Microbiota [J].
Barber, Claudia ;
Sabater, Carlos ;
Angeles Avila-Galvez, Maria ;
Vallejo, Fernando ;
Alvaro Bendezu, Rogger ;
Guerin-Deremaux, Laetitia ;
Guarner, Francisco ;
Carlos Espin, Juan ;
Margolles, Abelardo ;
Azpiroz, Fernando .
NUTRIENTS, 2022, 14 (21)
[4]   Metformin Alters Upper Small Intestinal Microbiota that Impact a Glucose-SGLT1-Sensing Glucoregulatory Pathway [J].
Bauer, Paige V. ;
Duca, Frank A. ;
Waise, T. M. Zaved ;
Rasmussen, Brittany A. ;
Abraham, Mona A. ;
Dranse, Helen J. ;
Puri, Akshita ;
O'Brien, Catherine A. ;
Lam, Tony K. T. .
CELL METABOLISM, 2018, 27 (01) :101-+
[5]   Fecal Metaproteomics Reveals Reduced Gut Inflammation and Changed Microbial Metabolism Following Lifestyle-Induced Weight Loss [J].
Biemann, Ronald ;
Buss, Enrico ;
Benndorf, Dirk ;
Lehmann, Theresa ;
Schallert, Kay ;
Puettker, Sebastian ;
Reichl, Udo ;
Isermann, Berend ;
Schneider, Jochen G. ;
Saake, Gunter ;
Heyer, Robert .
BIOMOLECULES, 2021, 11 (05)
[6]   Hypoglycemic Effects of Pyrodextrins with Different Molecular Weights and Digestibilities in Mice with Diet-Induced Obesity [J].
Cao, Yan ;
Chen, Xiaoli ;
Sun, Ying ;
Shi, Jialiang ;
Xu, Xiaojuan ;
Shi, Yong-Cheng .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2018, 66 (11) :2988-2995
[7]   Brown Adipose Expansion and Remission of Glycemic Dysfunction in Obese SM/J Mice [J].
Carson, Caryn ;
Macias-Velasco, Juan F. ;
Gunawardana, Subhadra ;
Miranda, Mario A. ;
Oyama, Sakura ;
St Pierre, Celine L. ;
Schmidt, Heather ;
Wayhart, Jessica P. ;
Lawson, Heather A. .
CELL REPORTS, 2020, 33 (01)
[8]   Structure Characterization and Potential Probiotic Effects of Sorghum and Oat Resistant Dextrins [J].
Chen, Wenwen ;
Zhang, Ting ;
Ma, Qi ;
Zhu, Yingying ;
Shen, Ruiling .
FOODS, 2022, 11 (13)
[9]   A Comparative Study of Resistant Dextrins and Resistant Maltodextrins from Different Tuber Crop Starches [J].
Chen, Xinyang ;
Hou, Yinchen ;
Wang, Zhen ;
Liao, Aimei ;
Pan, Long ;
Zhang, Mingyi ;
Xue, Yingchun ;
Wang, Jingjing ;
Liu, Yingying ;
Huang, Jihong .
POLYMERS, 2023, 15 (23)
[10]   Inhibiting serotonin signaling through HTR2B in visceral adipose tissue improves obesity-related insulin resistance [J].
Choi, Won Gun ;
Choi, Wonsuk ;
Oh, Tae Jung ;
Cha, Hye-Na ;
Hwang, Inseon ;
Lee, Yun Kyung ;
Lee, Seung Yeon ;
Shin, Hyemi ;
Lim, Ajin ;
Ryu, Dongryeol ;
Suh, Jae Myoung ;
Park, So-Young ;
Choi, Sung Hee ;
Kim, Hail .
JOURNAL OF CLINICAL INVESTIGATION, 2021, 131 (23)