Global structure of positive solutions for third-order semipositone integral boundary value problems

被引:0
作者
Bi, Zhonghua [1 ]
Liu, Sanyang [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710126, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 03期
基金
中国国家自然科学基金;
关键词
positive solutions; semipositone; third-order integral boundary value problems; bifurcation; EXISTENCE; EQUATION;
D O I
10.3934/math.2024353
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we were concerned with the global behavior of positive solutions for thirdorder semipositone problems with an integral boundary condition y ''' + beta y '' + alpha y ' + lambda f(t,y) = 0, t is an element of (0, 1), y(0) = y '(0) = 0, y(1) = chi integral(1 )(0)y(s)ds, 0 where alpha is an element of (0, infinity) and beta is an element of (-infinity, infinity) are two constants, lambda, chi are two positive parameters, and f is an element of C([0, 1] x [0, infinity), R) with f(t, 0) < 0. Our analysis mainly relied on the bifurcation theory.
引用
收藏
页码:7273 / 7292
页数:20
相关论文
共 25 条
  • [1] Ambrosetti A., 1994, Differential Integral Equations, V7, P655
  • [2] Existence results for superlinear semipositone BVP's
    Anuradha, V
    Hai, DD
    Shivaji, R
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (03) : 757 - 763
  • [3] Positive Solutions for Third-Order Boundary Value Problems with Indefinite Weight
    Bi, Zhonghua
    Liu, Sanyang
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (06)
  • [4] Cabada A, 2014, SPRINGERBRIEF MATH, P1, DOI 10.1007/978-1-4614-9506-2
  • [5] Existence results for a clamped beam equation with integral boundary conditions
    Cabada, Alberto
    Jebari, Rochdi
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (70) : 1 - 17
  • [6] MULTIPLICITY RESULTS FOR FOURTH ORDER PROBLEMS RELATED TO THE THEORY OF DEFORMATIONS BEAMS
    Cabada, Alberto
    Jebari, Rochdi
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (02): : 489 - 505
  • [7] Uniqueness of nonnegative solutions for semipositone problems on exterior domains
    Castro, Alfonso
    Sankar, Lakshmi
    Shivaji, R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (01) : 432 - 437
  • [8] Coppel W.A., 1971, Lecture Notes in Mathematics, V220
  • [9] Deimling K., 1985, Nonlinear Functional Analysis, DOI [10.1007/978-3-662-00547-7, DOI 10.1007/978-3-662-00547-7]
  • [10] Existence of positive radial solutions for superlinear, semipositone problems on the exterior of a ball
    Dhanya, R.
    Morris, Q.
    Shivaji, R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (02) : 1533 - 1548