Refinements of Katz-Sarnak theory for the number of points on curves over finite fields

被引:3
作者
Bergstrom, Jonas [1 ]
Howe, Everett W. [2 ]
Lorenzo Garcia, Elisa [2 ]
Ritzenthaler, Christophe [3 ]
机构
[1] Stockholms Univ, Dept Math, Stockholm, Sweden
[2] Univ Neuchatel, Inst Math, Fac Sci, Neuchatel, Switzerland
[3] Univ Cote Azur, Lab JA Dieudonne, Nice, France
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2025年 / 77卷 / 02期
关键词
Katz-Sarnak theory; distribution; moments; Serre's obstruction; SMOOTH PLANE-CURVES; MODULI SPACE; COHOMOLOGY; DISTRIBUTIONS; POLYNOMIALS; FROBENIUS; FAMILIES; TRACES;
D O I
10.4153/S0008414X2400004X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper goes beyond Katz-Sarnak theory on the distribution of curves over finite fields according to their number of rational points, theoretically, experimentally, and conjecturally. In particular, we give a formula for the limits of the moments measuring the asymmetry of this distribution for (non-hyperelliptic) curves of genus $g\geq 3$ . The experiments point to a stronger notion of convergence than the one provided by the Katz-Sarnak framework for all curves of genus $\geq 3$ . However, for elliptic curves and for hyperelliptic curves of every genus, we prove that this stronger convergence cannot occur.
引用
收藏
页码:400 / 425
页数:26
相关论文
共 50 条
  • [1] A heuristic for the distribution of point counts for random curves over a finite field
    Achter, Jeffrey D.
    Erman, Daniel
    Kedlaya, Kiran S.
    Wood, Melanie Matchett
    Zureick-Brown, David
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 373 (2040):
  • [2] Ahmadi O, 2010, MATH RES LETT, V17, P689
  • [3] [Anonymous], 1980, Inst. Hautes Etudes Sci. Publ. Math.
  • [4] Apostol T. M., 1976, INTRO ANAL NUMBER TH, DOI [10.1007/978-3-662-28579-4, DOI 10.1007/978-3-662-28579-4]
  • [5] A Family of Calabi-Yau Varieties and Potential Automorphy II
    Barnet-Lamb, Tom
    Geraghty, David
    Harris, Michael
    Taylor, Richard
    [J]. PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2011, 47 (01) : 29 - 98
  • [6] Cohomology of moduli spaces of curves of genus three via point counts
    Bergstrom, Jonas
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 622 : 155 - 187
  • [7] Bergström J, 2023, EPIJOURNAL GEOM ALGE, V7
  • [8] Lower bounds on the maximal number of rational points on curves over finite fields
    Bergstrom, Jonas
    Howe, Everett w.
    Garcia, Elisa Lorenzo
    Ritzenthaler, Christophe
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2024, 176 (01) : 213 - 238
  • [9] Siegel modular forms of degree three and the cohomology of local systems
    Bergstrom, Jonas
    Faber, Carel
    van der Geer, Gerard
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2014, 20 (01): : 83 - 124
  • [10] Billingsley P., 1995, Probability and Measure, Vthird