Refinements of Katz-Sarnak theory for the number of points on curves over finite fields

被引:3
作者
Bergstrom, Jonas [1 ]
Howe, Everett W. [2 ]
Lorenzo Garcia, Elisa [2 ]
Ritzenthaler, Christophe [3 ]
机构
[1] Stockholms Univ, Dept Math, Stockholm, Sweden
[2] Univ Neuchatel, Inst Math, Fac Sci, Neuchatel, Switzerland
[3] Univ Cote Azur, Lab JA Dieudonne, Nice, France
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2025年 / 77卷 / 02期
关键词
Katz-Sarnak theory; distribution; moments; Serre's obstruction; SMOOTH PLANE-CURVES; MODULI SPACE; COHOMOLOGY; DISTRIBUTIONS; POLYNOMIALS; FROBENIUS; FAMILIES; TRACES;
D O I
10.4153/S0008414X2400004X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper goes beyond Katz-Sarnak theory on the distribution of curves over finite fields according to their number of rational points, theoretically, experimentally, and conjecturally. In particular, we give a formula for the limits of the moments measuring the asymmetry of this distribution for (non-hyperelliptic) curves of genus $g\geq 3$ . The experiments point to a stronger notion of convergence than the one provided by the Katz-Sarnak framework for all curves of genus $\geq 3$ . However, for elliptic curves and for hyperelliptic curves of every genus, we prove that this stronger convergence cannot occur.
引用
收藏
页码:400 / 425
页数:26
相关论文
共 50 条
[1]   A heuristic for the distribution of point counts for random curves over a finite field [J].
Achter, Jeffrey D. ;
Erman, Daniel ;
Kedlaya, Kiran S. ;
Wood, Melanie Matchett ;
Zureick-Brown, David .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 373 (2040)
[2]  
Ahmadi O, 2010, MATH RES LETT, V17, P689, DOI 10.4310/MRL.2010.v17.n4.a9
[3]  
[Anonymous], 2023, PREPRINT
[4]  
Apostol T. M., 1976, INTRO ANAL NUMBER TH, DOI [10.1007/978-3-662-28579-4, DOI 10.1007/978-3-662-28579-4]
[5]   A Family of Calabi-Yau Varieties and Potential Automorphy II [J].
Barnet-Lamb, Tom ;
Geraghty, David ;
Harris, Michael ;
Taylor, Richard .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2011, 47 (01) :29-98
[6]   Cohomology of moduli spaces of curves of genus three via point counts [J].
Bergstrom, Jonas .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 622 :155-187
[7]  
Bergström J, 2023, EPIJOURNAL GEOM ALGE, V7
[8]   Lower bounds on the maximal number of rational points on curves over finite fields [J].
Bergstrom, Jonas ;
Howe, Everett w. ;
Garcia, Elisa Lorenzo ;
Ritzenthaler, Christophe .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2024, 176 (01) :213-238
[9]   Siegel modular forms of degree three and the cohomology of local systems [J].
Bergstrom, Jonas ;
Faber, Carel ;
van der Geer, Gerard .
SELECTA MATHEMATICA-NEW SERIES, 2014, 20 (01) :83-124
[10]  
BILLINGSLEY P, 1986, PROBABILITY MEASURE